Principles of Program Design: Problem Solving with JavaScript

 1-10

Chapter 1
The Craft of Programming
	At a Glance

Instructor’s Manual Table of Contents

· Overview

· Chapter Objectives

· Teaching Tips

· Quick Quizzes

· Class Discussion Topics

· Additional Projects

· Additional Resources

· Key Terms

	Lecture Notes

Overview

Your students will use the JavaScript scripting language in this book. Why JavaScript? It does not require software installation or a special editor. Furthermore, when they want to test a few lines of code, they simply save their file and open it in any Web browser; they do not even need to be connected to the Internet. With JavaScript, they can think more about programming and less about the programming environment.
Chapter Objectives

In this chapter, students learn to:

· Explain computer programming and what it includes

· Describe how data and instructions are stored in the computer

· Explain the difference between hardware and software, with examples of each

· Summarize the basic operating functions of the central processing unit, memory, and storage drives

· Describe an algorithm and name some tools for developing one

· Describe methods for testing programs

· Name the two main data types a programmer uses and give an example of each

· Define the binary and decimal numbering systems and convert a number from one system to another

· Explain the difference between the two main character coding systems, ASCII and Unicode

· Define variables and named constants and explain how to declare them and assign values to them
· Define and contrast input and output
· Explain the need for and use of program comments
· Describe the input-processing-output method
· Use pseudocode to begin solving a problem by developing an algorithm

Teaching Tips

What is Computer Programming?
1. Introduce the terms programming, bits, machine language, and data.
	Teaching Tip

	Point out that the terms “data” and “information” are often used interchangeably, but most programmers make a distinction, referring to unprocessed and unorganized facts, names, and numbers as “data” and the useful results of the computer’s processing and organizing as “information.”

2. Students should be aware that there are three general categories of data types: numeric data (values that can be used in mathematical calculations), text data (letters, punctuation marks, and digits that can be displayed or printed), and raw binary data (including special formats, such as image, video, and sound files).
3. Introduce the terms software, hardware, and central processing unit. Use Figure 1-1 to aid the discussion.
4. It is important for students to understand the steps involved in the information processing cycle.
5. Explain that the ALU is like an intelligent calculator. The arithmetic portion does all kinds of mathematical calculations, including basic arithmetic, trigonometry, and statistics.
6. Introduce the terms random access memory (RAM) and read-only memory (ROM).
7. Long-term storage is handled with disk drives and storage media. The most common storage devices are electromagnetic hard drives, electronic USB flash drives and memory cards, and optical CDs and DVDs. Use Figure 1-2 to aid the discussion.
Quick Quiz 1

1. The most basic instructions to the computer’s processor are stored as sequences of bits and make up the computer’s ____.
Answer: machine language

2. A computer and its related equipment are collectively called ____.

Answer: hardware

3. The ____ and system memory make up the core of a computer’s activity.

Answer: processor, microprocessor
4. The ____ is like an intelligent calculator. The arithmetic portion does all kinds of mathematical calculations, including basic arithmetic, trigonometry, and statistics.

Answer: arithmetic logic unit, ALU

Programming Skills: Using the Right Tool for the Right Job
1. Make sure that students understand that good programming skills include basic mathematics and a familiarity with common statistics, including calculating the average, minimum, and maximum.
Algorithms: The Logic of Problem Solving
1. Point out that computers are used to solve problems. They’re machines, but they have the following capabilities that make them preferable to humans for certain applications:
· They can operate extremely fast, performing billions of operations per second.

· They can operate for extremely long periods of time without getting tired or making mistakes.
· They can perform the same tasks repeatedly, also without getting tired or making mistakes.
2. Introduce the terms algorithm, pseudocode, syntax rules, and keywords.
	Teaching Tip

	To learn more about algorithms, visit the following site: http://computer.howstuffworks.com/question717.htm.

Testing Your Programs
1. Note that like any product, software applications must be tested thoroughly at all stages of development. Similarly, programs written for a company by a person or team inside the company also need to be tested thoroughly.
2. It is important for students to understand the three main categories of errors: syntax errors (violations of language rules), logic errors (incorrect instructions, such as adding instead of multiplying), and runtime errors (errors not known until the program runs, such as a missing data file).
3. Introduce the term data sets.
Quick Quiz 2
1. The steps formulated to solve a problem, stated clearly and correctly, make up what’s called a(n) ____.
Answer: algorithm
2. When programmers develop algorithms, they use ____, a structured, English-like language used to represent steps in an algorithm.
Answer: pseudocode
3. One method of testing a program is to create ____ to see how the program behaves at data boundaries.
Answer: data sets
4. The term ____ errors is used to describe incorrect instructions, such as adding instead of multiplying.
Answer: logic
Programming Basics
1. In addition to developing a logical set of steps to solve a problem—an algorithm—students need to know how programming languages enable them to implement algorithms.
Data Types and Numbering Systems
1. Discuss the difference between text data and numeric data.
2. Introduce the terms decimal numbering system and binary numbering system. Use Tables 1-1 and 1-2 to aid the discussion.
Converting Binary Numbers to Decimal
1. You can convert a binary number to its decimal equivalent by using a simple process of multiplication and addition. Use Tables 1-3 to 1-6 to aid the discussion.
2. Students should understand how to use the binary-to-decimal conversion table. Discuss the steps involved.
Converting Decimal Numbers to Binary
1. Converting a decimal number to its binary equivalent involves whole number division, using the quotient and the remainder. In programming, when dividing whole numbers, the division operator (/) is used to find the quotient, and the modulus operator (%) is used to find the remainder. Use Table 1-7 to aid the discussion.
2. Discuss the steps involved in using the decimal-to-binary conversion table. Use Tables 1-8 to 1-10 to aid the discussion.
Detective Work
1. As a class exercise, use Table 1-10 (or print decimalToBinaryTable.doc in the student data files) to convert the decimal number 116 to binary.
Character-Coding Systems
1. Introduce the terms American Standard Code for Information Interchange (ASCII) and Unicode.
 Variables and Named Constants
1. Introduce the terms variables, values, declaring, Numeric, String, assignment statement, and camel casing. Use examples to aid the discussion.
2. Discuss the rules for variable names and other identifiers. Note that variables should be easy to read and understand.
3. Remind students that they are not the only ones who have to read their program code. Those who have to figure out what their programs are doing will praise them for using easy-to-understand variable names or curse their names for writing hard-to-understand code.
4. Introduce the terms named constants and literals. Use examples to aid the discussion.
5. Remind students that by definition, the value of a named constant cannot change after it is declared, so it must be given a value at the time it’s declared.

Assignment Statements
1. With the aid of examples, discuss the basic components of assignment statements.
2. Provide examples of assignment statements with numeric variables being assigned literal values.
	Teaching Tip

	Emphasize that assignment statements differ from algebraic equations, although both use the equal sign. In algebra, an equation is a statement that the values on both sides of the equals sign are already equal. In programming, an assignment statement says to take the value on the right side of the equal sign and store it in the memory location for the variable on the left side.

3. Explain that for string assignments, the value on the right must be a string literal or the name of a string variable. For numeric assignments, the value on the right must be a numeric literal or the name of a numeric variable. If not, an error results.
Numeric Operations
1. Explain that besides addition, subtraction, multiplication, and division, most programming languages have an operator for the modulus operation, which returns the remainder after one integer is divided by another. Use examples to aid the discussion.
2. Note that the use of the modulus (mod) operator (%) is not as common as the basic arithmetic operations, but it comes in handy when you want to divide a quantity of items equally and find out how many items will be left over. Use examples to aid the discussion.
 String Operations
1. Introduce the term concatenation.
2. Note that like numeric calculations, string concatenation can involve operands that are literals or other string variables. Use examples to aid the discussion
Input and Output
1. Introduce the terms runtime, input, output, and prompt.
Program Comments
1. Emphasize that your entire program, and every one of your programs, should be written so that a nonprogrammer can understand what the program accomplishes and other programmers can understand how the program accomplishes it.
2. Introduce the term comments.

	Teaching Tip

	Note that if your programs are to be useful to your company, they must be able to be modified and updated to adapt to changing times and business needs.

The Input-Processing-Output Method
1. Introduce the term input-processing-output (IPO).
2. The following topic should also be discussed:
· Detective Work: A clerk wants to print a payroll statement for one employee, entering the employee’s name, hours worked, wage rate, and total deductions. The program calculates gross pay and net (take-home) pay.
· Programmer’s Workshop: In the Programmer’s Workshop, you study a business problem and develop an algorithm for a solution as a programmer would approach it. For this problem, you use pseudocode as the programming tool.
Quick Quiz 3

1. The American Standard Code for Information Interchange (ASCII) character-coding system uses ____ bits, consisting of a unique arrangement of eight 0s and 1s for each character.
Answer: 8
2. Memory locations are used to store ____, the numeric or text data you want to keep track of.
Answer: values
3. ____ a variable simply informs the computer that you want to associate a particular name with a particular data type.
Answer: Declaring
4. If a string is a group of characters, it makes sense that you can make longer strings out of shorter ones by putting them together. This process is called ____.
Answer: concatenation
Class Discussion Topics

1. What are the advantages of using named constants?
2. What does the term interactive programming mean?
3. Which is more important: writing complicated programming code or writing programs that run correctly and efficiently?
4. How do you keep track of all the variables and programming steps needed in an algorithm?
Additional Projects

1. Using pseudocode, develop an algorithm to represent the following grading scale.
A+ = 97-100

A = 94-96

A- = 90-93

B+ = 87-89

B = 84-86

B- = 80-83

C+ = 77-79

C = 74-76

C- = 70-73

2. Using pseudocode, write an algorithm that uses income tax information for the tax year 2010 to calculate the deductions made on your salary. The algorithm should show your monthly take-home pay.
Additional Resources

1. What are bits, bytes, and other units of measure for digital information?: http://kb.iu.edu/data/ackw.html
2. Central Processing Unit (CPU): http://pcsupport.about.com/od/componentprofiles/p/p_cpu.htm
3. How RAM Works: www.howstuffworks.com/ram.htm
Key Terms
· algorithm—The logical steps formulated to solve a problem.

· American Standard Code for Information Interchange (ASCII)—A character-coding system that uses 8 bits to represent each character; Standard ASCII uses only 7 bits and includes 128 characters, and Extended ASCII makes use of the 8th bit to expand the number of characters to 256.

· assignment statement—A programming statement that assigns values to variables; typically, the variable name is followed by an equals sign and the value to be assigned.

· binary numbering system—A numbering system that uses two digits, 0 and 1.

· bits—Derived from the term “binary digits,” they’re the 0s and 1s a computer’s processor uses to store instructions.

· camel casing—A convention for naming variables and other identifiers in which all letters are lowercase except the first letter of each new word, starting with the second word, as in lastName.

· central processing unit (CPU)—The computer component that processes instructions and performs calculations on data; made up of the control unit and the arithmetic logic unit (ALU).

· comments—Documentation added to a program that includes the program’s name and purpose, who wrote it, and the date it was written or modified; also used to define variables and constants and describe the purpose of each code section to make program maintenance and modification easier.

· concatenation—Joining shorter strings with the + operator to create longer strings.

· data sets—Collections of data designed to test how a program behaves at data boundaries.

· data—The raw information, stored in digital form, that’s processed by computers.

· decimal numbering system—A numbering system that uses 10 digits, 0 through 9.

· declaring—The process of designating a memory location for program use by associating a variable name with a data type.

· formatting—Characters or symbols used to enhance the display of text or numeric data to improve its readability; they don’t affect the value of text or numeric variables.
· hardware—The physical components of a computer system.
· input—Data a program gathers by having users enter values while interacting with the program or by reading values from a file or database.

· input-processing-output (IPO)—A method for determining the inputs, processes, and outputs an algorithm needs to solve a programming problem.

· keywords—Terms in pseudocode or a programming language that are reserved for special purposes.

· literals—Values that have only one meaning and can’t be changed; for this reason, specifying the data type isn’t necessary. See also named constants.

· machine language—The sequence of bits that make up a computer’s internal set of instructions. Programming languages must be translated into machine languages so that computers can execute program instructions.

· named constants—Identifiers representing literal values that can’t be changed while a program is running; used for easy reference and modification in program code.

· output—Information that’s sent from the computer to the user’s screen (called “soft copy”) or to a printer (called “hard copy”).

· programming—The process of formulating instructions to operate a digital computer.

· prompt—An instruction displayed onscreen that directs a user to enter data.

· pseudocode—A structured, English-like language used to represent steps in an algorithm; developed as a consistent and easily understood method of describing logic. Although it’s not a programming language, it can be converted to one easily.

· random access memory (RAM)—Also called “main memory,” it’s the temporary storage place for instructions and data while the computer is running. RAM is considered volatile because its contents are lost when the computer is powered down.

· read-only memory (ROM)—An area of nonvolatile memory containing instructions for the system to perform a self-test as it powers up and load the operating system; “read-only” means the data can be accessed but not changed.

· runtime—The period during which a computer is running (executing) a program.
· software—A digital representation of instructions on the computer, including commands, modules, and programs.

· syntax rules—The rules in pseudocode or a programming language for spacing, punctuation, indentation, and order of language elements.

· Unicode—A character-coding system that uses 16 bits to represent each character and is capable of 65,536 characters; developed to address a variety of alphabets.

· values—Numeric or text data stored in variables. See also variables.

· variables—Programmer-designated names for memory locations.
