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CHAPTER P. PRELIMINARIES

Section P.1 Real Numbers and the Real Line
(page 10)

2 —
5= 0.22222222-.- = 0.2
1
11

If x =0.121212--, then 100x = 12.121212--- = 12 4 x.
Thus 99x = 12 and x = 12/99 = 4/33.

= 0.09090909- -- = 0.09

If x = 3.277777---, then 10x — 32 = 0.77777--- and
100x — 320 = 7 + (10x — 32), or 90x = 295. Thus
x =295/90 = 59/18.

1/7 = 0.142857142857 - -- = 0.142857

2/7 = 0.285714285714--- = 0.285714

3/7 = 0.428571428571--- = 0.428571

4/7 = 0.571428571428--- = 0.571428

note the same cyclic order of the repeating digits

5/7 = 0.714285714285--- = 0.714285

6/7 = 0.857142857142--- = 0.857142

Two different decimal expansions can represent the same
number. For instzince, both 0.999999... = 0.9 and
1.000000- - - = 1.0 represent the number 1.

x >0 and x < 5 define the interval [0, 5].

x < 2 and x > —3 define the interval [—3,2).

X > —5 or x < —6 defines the union (—o0, —6) U (=5, o).

x < —1 defines the interval (—oo, —1].
x > —2 defines the interval (-2, 00).

X < 4 or x > 2 defines the interval (—oo, 00), that is, the
whole real line.

If —2x > 4, then x < —2. Solution: (—o0, —2)

If 3x +5 <8, then 3x < 8—5—3 and x < 1. Solution:
(=o00,1]

If 5x —3 <7 —3x, then 8x < 10 and x < 5/4. Solution:
(—00,5/4]

6—x 3x—4

If > , then 6 — x > 6x — 8. Thus 14 > 7x

and x < 2. Solution: (—o00,2]

If 3(2—x) <23 + x), then 0 < 5x and x > 0. Solution:

(0,00)

If x2 < 9, then |x| < 3 and —3 < x < 3. Solution:
(=3.3)

19.

20.

21.

22,

23.

24.

25.

26.

27.
28.
29.

30.
31.

SECTION P1 (PAGE 10)

Given: 1/(2—x) <3.

CASELIf x <2,then 1 <32—x)=6—-3x,s03x <5
and x < 5/3. This case has solutions x < 5/3.

CASEIL If x >2,then 1 >3(2—x) =6—3x,s03x >5
and x > 5/3. This case has solutions x > 2.

Solution: (—o00,5/3) U (2, 00).

Given: (x +1)/x > 2.

CASE L If x >0, then x +1>2x, so x < 1.
CASEIL If x < 0, then x + 1 < 2x, so x > 1. (not
possible)

Solution: (0, 1].

Given: x2 —2x < 0. Then x(x —2) < 0. This is only
possible if x > 0 and x < 2. Solution: [0, 2].

Given 6x2 —5x < —1, then (2x —1)(3x — 1) <0, so either
x <1/2and x > 1/3, or x <1/3 and x > 1/2. The latter
combination is not possible. The solution set is [1/3,1/2].

Given x3 > 4x, we have x(x? — 4) > 0. This is possible
ifx <O0Oand x2 < 4, orif x > 0 and x2 > 4. The
possibilities are, therefore, -2 < x < 0 or2 < x < oo.
Solution: (—2,0) U (2, 00).

Given x2—x <2, then x2—x—2 <0 so (x—2)(x+1) < 0.
This is possible if x < 2 and x > —1 or if x > 2 and
x < —1. The latter situation is not possible. The solution
set is [—1,2].
Given: ad >1+4+ i

2 X
CASEL If x > 0, then x> > 2x + 8, so that
x2 —2x —8 > 0, or (x — 4)(x 4+ 2) > 0. This is pos-
sible for x > 0 only if x > 4.
CASE IL If x < 0, then we must have (x —4)(x 4+ 2) <0,
which is possible for x < 0 only if x > —2.
Solution: [—2,0) U [4, 00).
2

Given: i < —.
x—1 x+1

CASE L. If x > 1 then (x — 1)(x + 1) > 0, so that

3(x+1) <2(x—1). Thus x < —5. There are no solutions

in this case.

CASEIL If —1 < x < I, then (x — 1)(x + 1) < 0, so

3(x + 1) > 2(x — 1). Thus x > —5. In this case all

numbers in (—1, 1) are solutions.

CASE III. If x < —1, then (x — 1)(x + 1) > 0, so that

3(x +1) <2(x —1). Thus x < —5. All numbers x < —5

are solutions.

Solutions: (—o0, —5) U (—1,1).
If |x| =3 then x = £3.
If [x =3 =7, then x —3=47,s0 x = —4 or x = 10.

If 2t + 5] = 4,then 2t + 5 = £4,s0t = —9/2 or
t=-1/2.

Iffl—t|=1,then 1 —¢t ==%1,s0¢t =0o0rt =2.

If 8 — 35| =9, then 8 —3s = +9, so 3s = —1 or 17, and
s=—1/3ors=17/3.

Copyright © 2018 Pearson Canada Inc. 1
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SECTION P1 (PAGE 10)

If’%—l‘zl,then%—1=i1,sos=00rs=4.

If |x| <2, then x is in (=2, 2).

If |x| <2, then x is in [-2,2].

If|ls—1]<2,then 1 =2 <s<1+2,s0s isin [—1,3].
If|lt +2] <1,then -2 —-1 <t < =24 1,s0¢ is in
(=3,-1).

If [3x—7| <2, then 7—2 < 3x <742, so x is in (5/3, 3).
If |2x + 5] < 1,then —=5—1 <2x < =5+ 1, so x is in
(=3,-2).

If’%—l’fl,thenl—lf <141, s0 x is in [0,4].

N =

1
If ‘2— %’ < > then x/2 lies between 2 — (1/2) and
24 (1/2). Thus x is in (3,5).

The inequality |x + 1| > |x — 3| says that the distance
from x to —1 is greater than the distance from x to 3, so
x must be to the right of the point half-way between —1
and 3. Thus x > 1.

lx —3| <2|x| & x2 —6x + 9 = (x —3)? < 4x?
& 3x2 +6x—9 > 0 & 3(x +3)(x — 1) > 0. This
inequality holds if x < =3 or x > 1.

|a| = a if and only if @ > 0. It is false if a < 0.

The equation |[x — 1] = 1 — x holds if |[x — 1] = —(x — 1),
that is, if x —1 <0, or, equivalently, if x < 1.

The triangle inequality |x + y| < |x| 4 |y| implies that
x| =[x + y[ = [yl.
Apply this inequality with x =a —b and y = b to get
la —b| = |a| — |b].
Similarly, |a — b| = |b —a| > |b| - |a. Since (|a| - |b|‘ is

equal to either |a| — |b| or |b| — |a|, depending on the sizes
of a and b, we have

la = bl = [lal = 1b.

Section P.2 Cartesian Coordinates in the
Plane (page 16)

From A(0,3) to B(4,0), Ax =4—0=4 and

Ay =0-3=-3. |AB| = /42 + (-3)2 =5.

From A(-1,2) to B(4,—10), Ax = 4 —(—1) = 5 and
Ay =—-10—2=—12. |AB| = /52 + (-12)2 = 13.
From A(3,2) to B(—1,-2), Ax = —1 —3 = —4 and

Ay =-2-2=—4. |AB| = /(=42 + (—4)2 = 4/2.
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From A(0.5,3) to B(2,3), Ax =2—-0.5=1.5 and

Ay =3-3=0. |[AB| =1.5.

Starting point: (=2, 3). Increments Ax = 4, Ay = —7.
New position is (=2 4 4,3 + (—7)), that is, (2, —4).
Arrival point: (—2,—2). Increments Ax = —5, Ay = 1.
Starting point was (—2 — (=5), —2 — 1), that is, (3, —3).
x2 + y? = 1 represents a circle of radius 1 centred at the
origin.

x2 + y2 = 2 represents a circle of radius V2 centred at
the origin.

x2 + y? < 1 represents points inside and on the circle of
radius 1 centred at the origin.

x2 4+ y2 = 0 represents the origin.

y > x? represents all points lying on or above the

parabola y = x2.

y < x?2 represents all points lying below the parabola

y = x2.

The vertical line through (—2,5/3) is x = —2; the hori-
zontal line through that point is y = 5/3.

The vertical line through (\/5, —13)isx = /2; the
horizontal line through that point is y = —1.3.

Line through (—1,1) with slope m =1 is y = 1+1(x+1),
ory=x+2.

Line through (—2,2) with slope m =
y=24+(1/2)(x +2), or x —2y = —6.

Line through (0, b) with slope m =2 is y = b + 2x.

1/2 is

Line through (a,0) with slope m = =2 is y = 0—2(x—a),
or y =2a—2x.

At x = 2, the height of the line 2x 4+ 3y = 6 is

y =(6—4)/3 =2/3. Thus (2, 1) lies above the line.

At x = 3, the height of the line x —4y =7 is
y=3-17)/4 =—1. Thus (3,—1) lies on the line.

The line through (0,0) and (2, 3) has slope
m = (3—0)/(2—-0) = 3/2 and equation y = (3/2)x or
3x -2y =0.

The line through (—2, 1) and (2, —2) has slope
m=(-2-1)/(2 4+ 2) = —3/4 and equation
y=1—03/4)(x +2) or 3x +4y = 2.
The line through (4, 1) and (-2, 3) has slope

1
m = (3—1)/(—2—4) = —1/3 and equation y = l—g(x—4)
or x +3y =17.
The line through (—2,0) and (0, 2) has slope
m=(2-0)/(0+2) =1 and equation y =2 + x.

Ifm=-2and b = \/E, then the line has equation
y =—2x+ 2.

2 Copyright © 2018 Pearson Canada Inc.
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26. If m = —1/2 and b = -3, then the line has equation
y=—(1/2)x =3, 0or x +2y = —6.

27. 3x 4+ 4y = 12 has x-intercept a = 12/3 = 4 and y-
intercept b = 12/4 = 3. Its slope is —b/a = —3/4.
y A

N

28. x 4+ 2y = —4 has x-intercept a = —4 and y-intercept
b=—-4/2=-2. Tts slope is —b/a =2/(—4) = —1/2.
y A

Fig. P2-28

29. 2x — /3y = 2 has x-intercept a = 2//2 = /2
and y-intercept b = —2/+/3. Its slope is
—bja =2/6=/2/3.

y A

-

Fig. P2-29

30. 1.5x —2y = —3 has x-intercept ¢ = —3/1.5 = —2 and
y-intercept b = —3/(—=2) = 3/2. Its slope is —b/a = 3/4.

31.

32.

33.

34.

35.

36.

SECTION P2 (PAGE 16)

1.5x —2y = -3 /

/ | X

Fig. P2-30

line through (2, 1) parallel to y = x +2 is y = x — 1; line
perpendicular to y = x +2is y = —x + 3.

line through (—2,2) parallel to 2x+y =4 is 2x+y = —2;
line perpendicular to 2x +y =4 is x —2y = —6.

We have

3x+4y=—-6 = 6x+8y=-12
2x -3y =13 6x — 9y = 39.
Subtracting these equations gives 17y = —51,s0 y = —3

and x = (13 —9)/2 = 2. The intersection point is (2, —3).
We have

2x4+ y=8 =
Sx =Ty =1

14x +7y = 56
5x =7y =1.

Adding these equations gives 19x = 57, so x = 3 and
y = 8 —2x = 2. The intersection point is (3, 2).

If a # 0 and b # 0, then (x/a) + (y/b) = 1 represents
a straight line that is neither horizontal nor vertical, and
does not pass through the origin. Putting y = 0 we get
x/a = 1, so the x-intercept of this line is x = a; putting
x =0 gives y/b = 1, so the y-intercept is y = b.
The line (x/2) — (y/3) = 1 has x-intercept ¢ = 2, and
y-intercept b = —3.

y A

=y

Fig. P2-36

37. The line through (2, 1) and (3, —1) has slope

m = (-1 —-1)/(3 —2) = -2 and equation
y=1-2(x—2)=5—2x. Its y-intercept is 5.

Copyright © 2018 Pearson Canada Inc. 3
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The line through (-2, 5) and (k, 1) has x-intercept 3, so 43.

also passes through (3,0). Its slope m satisfies

Thus k —3 = —1, and so k = 2.

C = Ax + B. If C = 5,000 when x = 10,000 and
C = 6,000 when x = 15,000, then

10,0004 + B = 5,000 44.

15,0004 + B = 6,000

Subtracting these equations gives 5,0004 = 1,000, so

A = 1/5. From the first equation, 2,000 + B = 5,000,
so B = 3,000. The cost of printing 100,000 pamphlets is
$100,000/5 + 3,000 = $23, 000.

45.

—40° and —40° is the same temperature on both the
Fahrenheit and Celsius scales.
C y
40+
30+

201

107 46.

.50 -40-30 -20-10/] 10 2090 40 50 60 70 80F
{0l
5

-, T C = §(F - 32)
304
404
(—40, —40)
-50+ 47.
Fig. P.2-40
A=(2,1), B=(64), C=(5-3) 48.

|AB| = (6 -2)2 + (4—1)2=+25=35
AC| = V(5-2)2+(3-1)2=+25=5
|BC| = V(652 + (4 + 3)2 = /50 = 5+2.

Since |AB| = |AC]|, triangle ABC is isosceles. 49.

A=(0,0), B=(1,v/3), C=(,0)

4B = (102 + (v3-02 = Vi=2 50.

AC| = V(2 =02+ (0-02=4=2

|BC| = \/(2—1)2+(0—\/§2= Va=2.
Since |AB| = |AC| = |BC|, triangle ABC is equilateral.

ADAMS and ESSEX: CALCULUS 9

A=2,-1), B=(1,3), C=(-32)
4B = V(1 =22+ 3B+ 1)2 =17
JAC| = V(=3 =22+ 2+ 1)2 = V34 = V2V17
|BC| = V(=3-1)>+(2-3)>=V17.
Since |AB| = |BC| and |AC| = «/2|AB|, triangle ABC
is an isosceles right-angled triangle with right angle at
B. Thus ABCD is a square if D is displaced from C
by the same amount A is from B, that is, by increments
Ax =2—-1=1and Ay = —-1—-3 = —4. Thus
D=(3+12+(-4)=(-2,-2).

If M = (Xm, Ym) is the midpoint of P P5, then the dis-
placement of M from P; equals the displacement of P,
from M:

Xm — X1 =X2—Xm, Ym—)V1=D)Y2—Vm-

Thus xp, = (X1 + x2)/2 and ym = (y1 + y2)/2.
If 0 = (x4, yq) is the point on P; P, that is two thirds of

the way from P; to P,, then the displacement of Q from
P; equals twice the displacement of P, from Q:

Xg — X1 = 2(x2 _xq)a Yg— V1= 2(y2 _yq)-

Thus x4 = (x1 +2x2)/3 and y,; = (y1 + 2y2)/3.

Let the coordinates of P be (x,0) and those of Q be
(X, —2X). If the midpoint of PQ is (2, 1), then

(x+X)/2=2, (0-2X)/2=1.

The second equation implies that X = —1, and the second
then implies that x = 5. Thus P is (5,0).

Vv (x —2)2 + y2 = 4 says that the distance of (x, y) from

(2,0) is 4, so the equation represents a circle of radius 4
centred at (2,0).

V=22 +y2 = /x2 + (y —2)2 says that (x,y) is
equidistant from (2,0) and (0,2). Thus (x, y) must lie on
the line that is the right bisector of the line from (2,0) to
(0,2). A simpler equation for this line is x = y.

The line 2x + ky = 3 has slope m = —2/k. This line is

perpendicular to 4x +y = 1, which has slope —4, provided
m = 1/4, that is, provided k = —8. The line is parallel to
4x +y =1if m = —4, that is, if k = 1/2.

For any value of k, the coordinates of the point of inter-

section of x + 2y = 3 and 2x — 3y = —1 will also satisfy
the equation

x+2y—-3)+k@2x—-3y+1)=0

4 Copyright © 2018 Pearson Canada Inc.
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because they cause both expressions in parentheses to be
0. The equation above is linear in x and y, and so rep-
resents a straight line for any choice of k. This line will
pass through (1,2) provided 1 +4—-3+k(2—-6+ 1) =0,
that is, if k = 2/3. Therefore, the line through the point
of intersection of the two given lines and through the point
(1,2) has equation

2
x+2y—3+§(2x—3y+1)=0,
or, on simplification, x = 1.

Section P.3 Graphs of Quadratic Equations
(page 22)

2 +y2 =16

x24+(y—=22=4,0rx2+y2—4y=0

(x+22+y2=9,0orx2+y2+4y=5

(x=324+(+42=25 o0 x2+y2—6x+8y =0.

x2+y2—2x=3

x2—2x+14+y2=4

(x—1)>+y* =4

centre: (1,0); radius 2.

x2+y2+4y=0

¥ +yPrdy+4=4

P+ (y+27=4

centre: (0,—2); radius 2.

x2+y2—2x+4y:4

=214y 4y +4=9

@=1D*+(+27=9

centre: (1,—2); radius 3.

x2+y2—2x—y+1:0

2 2 1 _ 1

x“=2x+1+y —y+z=13
2

=12+ (- 1P = )

centre: (1,1/2); radius 1/2.

x2 4 y2 > 1 represents all points lying outside the circle
of radius 1 centred at the origin.

x2 + 2 < 4 represents the open disk consisting of all
points lying inside the circle of radius 2 centred at the
origin.

(x + 1)% 4+ y2 < 4 represents the closed disk consisting of
all points lying inside or on the circle of radius 2 centred
at the point (—1,0).

x% 4+ (y —2)? < 4 represents the closed disk consisting of
all points lying inside or on the circle of radius 2 centred
at the point (0, 2).

13.

15.

16.

17.

18.

19.
20.
21.

22,

23.

24.

25.

26.

SECTION P3 (PAGE 22)

Together, x2 + y2 > 1 and x2 + y? < 4 represent annulus
(washer-shaped region) consisting of all points that are
outside the circle of radius 1 centred at the origin and
inside the circle of radius 2 centred at the origin.

Together, x2 + y? < 4 and (x + 2)% + y? < 4 represent the
region consisting of all points that are inside or on both
the circle of radius 2 centred at the origin and the circle
of radius 2 centred at (—2,0).

Together, x2 4 y? < 2x and x2 +y2 < 2y (or, equivalently,
(x =12 4+ y% < 1 and x? + (y — 1)? < 1) represent
the region consisting of all points that are inside both the
circle of radius 1 centred at (1,0) and the circle of radius
1 centred at (0, 1).

x2 + y2 — 4x + 2y > 4 can be rewritten

(x —2)2 + (y + 1) > 9. This equation, taken together
with x + y > 1, represents all points that lie both outside
the circle of radius 3 centred at (2, —1) and above the line
x+y=1

The interior of the circle with centre (—1,2) and radius
V6 is given by (x + )2+ (y —2)2 <6, or
X2+ y2 4+ 2x—dy < 1.

The exterior of the circle with centre (2, —3) and ra-
dius 4 is given by (x — 2)%2 4+ (y + 3)2 > 16, or
x2 4+ y2 —4x + 6y > 3.

x2 + y2 <2, x>1
X24+y2>4, -2+ -3?%<10
The parabola with focus (0,4) and directrix y = —4 has

equation x2 = 16y.

The parabola with focus (0,—1/2) and directrix y = 1/2
has equation x? = —2y.

The parabola with focus (2,0) and directrix x = —2 has
equation y? = 8x.

The parabola with focus (—1,0) and directrix x = 1 has
equation y? = —4x.

y = x2/2 has focus (0, 1/2) and directrix y = —1/2.

y
X
y=—1/2
Fig. P.3-25

y = —x2 has focus (0, —1/4) and directrix y = 1/4.

Copyright © 2018 Pearson Canada Inc. 5
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y=1/4

®

P0,—1/4

27. x = —y2/4 has focus (—1,0) and directrix x = 1.

Y A

(=10

x=—y2/4

Fig. P.3-27

28. x = y2/16 has focus (4,0) and directrix x = —4.
Yy 4

(4,0)

x=—4
x=y2/16

Fig. P.3-28

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

ADAMS and ESSEX: CALCULUS 9

3 Version (c)

y=x

(3\76:3r)sion (b)

Version (d)

(4.-2)

3Version (a)

Fig. P3-29

a) has equation y = x% — 3.

b) has equation y = (x —4)% or y = x? —8x + 16.

¢) has equation y = (x —3)?> +3 or y = x? — 6x + 12.

d) has equation y = (x —4)2 —2, or y = x? — 8x + 14.

a) If y = mux is shifted to the right by amount x;, the
equation y = m(x — x1) results. If (a, b) satisfies this
equation, then b = m(a—x1), and so x; = a—(b/m).

Thus the shifted equation is
y=m(x—a+ (b/m)) =m(x —a) +b.

b) If y = mux is shifted vertically by amount yq,
the equation y = mx + yp results. If (a,b)
satisfies this equation, then b = ma + y;, and
so y1 = b — ma. Thus the shifted equation is
y = mx +b —ma = m(x —a) + b, the same
equation obtained in part (a).

M O

4y =Vx+1

y=V06x/2)+1

(7/2) = Vax +1

y = 1 — x? shifted down 1, left 1 gives y = —(x + 1)%.

x2 + y2 = 5 shifted up 2, left 4 gives
x+4H2+(y—-22%=5.

y = (x — 1)2 — 1 shifted down 1, right 1 gives
y=(x-22%-2.

y = 4/x shifted down 2, left 4 gives y = /x + 4 —2.

6 Copyright © 2018 Pearson Canada Inc.
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y = x2 + 3,y = 3x + 1. Subtracting these equations
gives

x2=3x+2=0,0r (x —1)(x—2)=0. Thus x = 1 or
x = 2. The corresponding values of y are 4 and 7. The
intersection points are (1,4) and (2,7).

y = x2 — 6, y = 4x — x2. Subtracting these equations
gives

202 —4x —6=0,0r2(x —3)(x + 1) = 0. Thus x = 3
or x = —1. The corresponding values of y are 3 and —5.
The intersection points are (3,3) and (—1, —5).

x2 + y2 = 25, 3x + 4y = 0. The second equation says

that y = —3x/4. Substituting this into the first equation
gives 25x2/16 = 25, so x = +4. If x = 4, then the
second equation gives y = —3; if x = —4, then y = 3.

The intersection points are (4, —3) and (—4, 3). Note that
having found values for x, we substituted them into the
linear equation rather than the quadratic equation to find
the corresponding values of y. Had we substituted into
the quadratic equation we would have got more solutions
(four points in all), but two of them would have failed to
satisfy 3x 4+ 4y = 12. When solving systems of nonlinear
equations you should always verify that the solutions you
find do satisfy the given equations.

2x2 4+ 2y2 = 5, xy = 1. The second equation says that
y = 1/x. Substituting this into the first equation gives
2x2 + (2/x%) = 5, or 2x* — 5x% + 2 = 0. This equation

factors to (2x2 — 1)(x2 — 2) = 0, so its solutions are
x = +1/+/2 and x = £++/2. The corresponding values
of y are given by y = 1/x. Therefore, the intersection

points are (1/+/2, v2), (=1/+/2,=+/2), (v/2,1/+/2), and
(—v2,-1//2).

(x2/4) + ¥ = 1 is an ellipse with major axis between
(—2,0) and (2,0) and minor axis between (0, —1) and
0, 1).

'

1,2
XZ 2
7 Tty =1

<

Fig. P3-43

9x2 4 16y? = 144 is an ellipse with major axis between
(—4,0) and (4,0) and minor axis between (0, —3) and
0,3).

45.

46.

47.

SECTION P3 (PAGE 22)

T9x2+16y2=144

Fig. P3-44

(x=3?%  (+2?

= 1 is an ellipse with centre at
(3,—2), major axis between (0, —2) and (6, —2) and minor
axis between (3,—4) and (3,0).

y

(x—93)2 n (yJZZ)Z -1

Fig. P3-45

(x_1)2+w

(1,—1), major axis between (1,—5) and (1, 3) and minor
axis between (—1,—1) and (3, —1).

= 4 is an ellipse with centre at

(x2/4) — y?> = 1 is a hyperbola with centre at the
origin and passing through (£2,0). Its asymptotes are
y = =+x/2.

Copyright © 2018 Pearson Canada Inc. 7
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Fig. P.3-47
48. x? — y2 = —1 is a rectangular hyperbola with centre at
the origin and passing through (0, +1). Its asymptotes are
y = =£x.
Fig. P.3-48
49. xy = —4 is a rectangular hyperbola with centre at the

origin and passing through (2, —2) and (—2,2). Its asymp-
totes are the coordinate axes.

'y

Fig. P.3-49

50. (x —1)(y +2) =1 is a rectangular hyperbola with centre
at (1,—2) and passing through (2,—1) and (0, —3). Its
asymptotes are x = 1 and y = —2.

ADAMS and ESSEX: CALCULUS 9

vy \
(x—D(y+2) =1

BN

Fig. P3-50

51.  a) Replacing x with —x replaces a graph with its reflec-
tion across the y-axis.

b) Replacing y with —y replaces a graph with its reflec-
tion across the x-axis.

52. Replacing x with —x and y with —y reflects the graph in
both axes. This is equivalent to rotating the graph 180°
about the origin.

53. x|+ yl=1
In the first quadrant the equation is x + y = 1.
In the second quadrant the equation is —x + y = 1.
In the third quadrant the equation is —x — y = 1.
In the fourth quadrant the equation is x — y = 1.

AN

x|+ |yl =1

Fig. P3-53

Section P.4 Functions and Their Graphs
(page 32)

1. f(x) =1+ x2; domain R, range [1, c0)
2. f(x) =1- /x; domain [0, 00), range (—o0, 1]
3. G(x) = +/8 —2x; domain (—o0, 4], range [0, c0)

4. F(x) = 1/(x — 1); domain (—o0, 1) U (1, 00), range
(—00,0) U (0, 00)

8 Copyright © 2018 Pearson Canada Inc.
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; domain (—o0, 2), range R. (The equation

h(t) =

¥ = h(t) can be squared and rewritten as

t2 + y2t —2y? = 0, a quadratic equation in ¢ having real
solutions for every real value of y. Thus the range of &
contains all real numbers.)

1
g(x) = 72; domain [2,3) U (3, 00), range

—Jx =
(—00,0) U (0, 00). The equation y = g(x) can be solved
for

x =2—(1—(1/y))? so has a real solution provided y # 0.

y y
N graph (i) . graph (ii)
X X
N graph (iii) »  graph (iv)
X X
Fig. P4-7

Graph (ii) is the graph of a function because vertical lines
can meet the graph only once. Graphs (i), (iii), and (iv)
do not have this property, so are not graphs of functions.

y graph (a) Y ' graph (b)

x \x

y graph (c) v graph (d)

SECTION P4 (PAGE 32)

a) is the graph of x(1 — x)2, which is positive for x > 0.

b) is the graph of x2 —x3 = x2(1 — x), which is positive
if x <1.

¢) is the graph of x — x*, which is positive if 0 < x < 1
and behaves like x near 0.

d) is the graph of x3—x*, which is positive if 0 < x < 1
and behaves like x3 near 0.

9.
X f(x) = x*
0 0
+0.5 0.0625
+1 1
+1.5 5.0625
+2 16
X
Fig. P4-9
10.
X fx) = 22
0 0
+0.5 0.62996
+1 1
+1.5 1.3104
+2 1.5874

T # # X

Fig. P4-10

1. f(x) =x%+ liseven: f(—x) = f(x)
12. f(x) =x3 4+ xis odd: f(—x) = —f(x)
13, f(x) = —> s 0dd: f(—x) = —f(x)

x2 —

Copyright © 2018 Pearson Canada Inc.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

SECTION P4 (PAGE 32)

fx) = 21 is even: f(—x) = f(x) 26.
x2 -1
flx) = e 12 is odd about (2,0): f2—x)=—f(2+x)
1 )
f(x) = v is odd about (—4, 0):
flo4=3%) == f(~4+x)
f(x) = x2—6x is even about x =3: f(3—x) = f(3+x)
f(x) = x3—2is odd about (0, —2): -
f=x)+2==(f(x) +2) )
fx) =127 =[x is even: f(=x) = f(x)
f(x) =|x + 1] is even about x = —1:
f(=1=x)= f(=1+x)
f(x) = v/2x has no symmetry.
f(x) = /(x —1)2 is even about x = 1:
JA—x)=f(1+x)
y 4 28.
29.
y A
30.

10

Copyright © 2018 Pearson Canada Inc.
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y=(x—1)2+1

y=+x+1

v




INSTRUCTOR’S SOLUTIONS MANUAL SECTION P4 (PAGE 32)

31. 36.

y=—|x|

32. 3.

x=—1
33. 38.
Y A
x=1
y=-—1
34.
¥y
y=1+[x-2| 39.
(1,3)
y=r(x)+2
2 ,2)
x
35 Fig. P4.39(a) Fig. P4.39(b)
. s
40.
1 (1,3)
x==2 y=r(x)+2
I~ 2 ,2)

=y

Fig. P.4.40(a) Fig. P.4.40(b)

Copyright © 2018 Pearson Canada Inc. 11



41.

42,

43.

44.

45.

46.

47.

SECTION P4 (PAGE 32)

(2,1

)

Range is approximately [—0.18, 0.68].

12

ADAMS and ESSEX: CALCULUS 9

1 Y= f 1) Fig. P.4-47
———
X

48. Range is approximately (—oo,0.1] U [2.9, 00).

V|4

4 3 2

Fig. P.4-48

49.

-S-A-’s-’z-’l\/f 2’\3’/21)5

y=x*—6x34+9x2 -1
Fig. P4-49

Apparent symmetry about x = 1.5.
This can be confirmed by calculating f(3—x), which turns
out to be equal to f(x).

Copyright © 2018 Pearson Canada Inc.
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50. Apparent symmetry about (—2,2).

_ 3—2x 4 x2
= 2—2x + x2

This can be confirmed by calculating shifting the graph
right by 2 (replace x with x—2) and then down 2 (subtract
2). The result is —5x/(1 4+ x2), which is odd.

53. If f is both even and odd the f(x) = f(—x) = —f(x),
so f(x) = 0 identically.

O N T I D R B
Section P.5 Combining Functions to Make
1 New Functions (page 38)
Fig. P.4-50
Apparent symmetry about x = 1.
This can be confirmed by calculating f(2—x), which turns 1. f(x)=x, gx)=+Vx—1.
out to be equal to f(x). D(f) =R, D(g) = [1, 0).
51. D(f +8) =D(f —g) = D(fg) = D(g/f) = [l.00),
" vy ; D(f/g) = (1.o0).
41 ' (f + () =x+Vx—1
N (f =) =x—Vx—1
| (fe)) = xvx =1
(f/&)(x) = x/vx -1
e (8/1)(x) = (VT=x)/x
b ; ; \ % >
32 1 [ I\N2 34 5 6 X
1 =S 2. () =VT—x g()=vI+x.
24 D(f) = (—o0, 1], D(g) = [-1,00).
' . D(f + ¢ =D(f —g) =D(fg) =[-1.1],
Fig. P4-51 D(f/g) = (=1.1], D(g/f) =[=1.1).
f+e9x)=+VI—x++/1+x
Apparent symmetry about (2, 1), and about the lines (f—9)x) =vVI—x—/T+x
y=x—1land y =3 —x.
, , 1 (fe)(x) = V1—-x?
These can be confirmed by noting that f(x) =1+ ——,
. , . , x=2 (f78)(x) = v =x)/(1 + x)
so the graph is that of 1/x shifted right 2 units and up
one. (&//)(x) = v +x)/(1—x)
52. >
_ 2x% + 3x Y 4 3.
YT X4 +s 5] Y
41
R4S X
3l 5 N
."’
2 1 ,Ill
14 y=x I,"
< 1 i x' ”,'
14 , !
5 y=—x "'l

Fig. P4-52

Copyright © 2018 Pearson Canada Inc. 13
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4.

y A

y=-x
haN 14
B

14

-2
5.

Y1y =x+ x|

Sy = x| |
\\ ///
,/
///
//,
,/
v
Sy =x=x
l//
4
y=x

6.

7. f(x)=x+5, gx) =x>-3.
fog0)=f(=3)=2, g(f(0)=g(5) =22
f@(x) = f(x*=3) =x>+2
go f(x) =g(f(x) =g(x+5) = (x+57>—3
fof(=5)=/(0)=5 g(g@2)=g)=-2
SUUX) = fx+5=x+10
gog(x) =g(g(x) = (x*—3)>-3

8.

10.

17.

ADAMS and ESSEX: CALCULUS 9

J(x) =2/x, glx) = x/(1 - x).

fofx)=2/2/x)=x; D(fof)={x:x#0}

Sfoglx)=2/(x/(1=x)) =2(1-x)/x;
D(fog)=1{x:x#01;

gof(x)=@2/x)/(1=Q2/x)) =2/(x=2);
D(gof)=1{x:x#02}

gog(x) = (x/(1=x)/(1 = (x/(1=x))) =x/(1—-2x);
D(gog) ={x 1 x#1/2,1}

fx) =1/(1-x), g(x) = v/x— L.

fofx)=1/1-(1/1-x) = (x—1)/x;
D(fof)y={x:x#0.1}

fogx)=1/(1—+x—1);
D(fog)=f{x:x>1 x#2}

go f(x)=(1/(1-x)—1=x/(01-x);
D(go f)=[0,1)

gogx)=yvx—1-1; D(gog) =1[2,00)

J)=Gx+1D/(x—-1)=1+2/(x—1), g(x) = sgn (x).
Sof(x)=1+2/01+2/(x-1)—-1)=x
D(fof)={x:x#1}
_sgnx+1
fogx)= e

go f(x) =sgn x+l ={1 ifx<—lorx>1,
) X — -1 if-l<x<1 ’

0; D(fog)=(-00,0)

1
D(go f)=1{x:x#-1, 1}
gog(x) =sgn(sgn(x)) =sgn(x); D(gog) ={x:x#0}

S(x) g(x) fogx)
11. x? x+1 (x +1)?
12. x—4 x+4 X
13. Jx x2 | x|
14. 2x3 43 x1/3 2x +3
15. x+1)/x 1/(x—=1) X
16. 1/(x +1)? x—1 1/x?

y=x

y = 2+ 4/x: previous graph is raised 2 units.

y =2+ /3 + x: previous graph is shiftend left 3 units.
y = 1/(2 4+ +/3 + x): previous graph turned upside down
and shrunk vertically.

14 Copyright © 2018 Pearson Canada Inc.
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y=2+/x+3
y=1/Q+V/x+B 22.
X
Fig. P5-17
18.
23.
24.
Fig. P.5-18
19.
25.
20. 26.

y=—01/2f®

Copyright © 2018 Pearson Canada Inc.
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y=2f((x—1)/2)

5 X
y A
I y=rw
(1, 1)
2 X
2y 4
y =g
1,1
x

15



27.

28.
29.
30.

31.

32.

33.

34.

SECTION P5 (PAGE 38)

F(x)=Ax+ B

(@) FoF(x)=F(x)

= A(Ax+B)+B=Ax+B

= A[(A-Dx+ B]=0

Thus, either A=0or A=1and B =0.
(b) FoF(x)=x

= AAx+B)+B=x

= (A2-Dx+A+1DB=0

Thus, either A= —1orA=1and B =0

[x] =0for0<x<1;[x]=0for -1 <x<0.

|x] = [x] for all integers x.

[—x] = —|x] is true for all real x; if x = n + y where n
is an integer and 0 < y < 1, then —x = —n — y, so that
[—x] = —n and |x] = n.

y=x-x]

f(x) is called the integer part of x because | f(x)|
is the largest integer that does not exceed x; i.e.
[x] =|f(x)| +y, where 0 <y < 1.

Va4
¢—0
&—o0
X
o—e y=f(x)
Oo——9
Fig. P5-32

If f is even and g is odd, then: f2, g2, fog, go f,

and f o f are all even. fg, f/g, g/f, and g o g are odd,
and f + g is neither even nor odd. Here are two typical
verifications:

Sfog(=x) = f(g(=x) = f(=g(x)) = f(g(x)) = fog(x)
(f8)(=x) = f(=x)g(=x) = f(0)[-g(x)]
=—f()g(x) = =(f2)(x).

The others are similar.

feven & f(—x) = f(x)

fodd & f(=x) =—f(x)

f even and odd = f(x) = —f(x) = 2f(x) =0
= f(x)=0

ADAMS and ESSEX: CALCULUS 9

35. a) Let E(x) = %[f(x) + f(=x)].

Then E(—x) = %[f(—x) + f(x)] = E(x). Hence,
E(x) is even.

Let O(x) = 4[/(x) - f(=x)].

Then O(—x) = 3[f(—x) — f(x)] = —O(x) and O(x)
is odd.

E(x)+ O(x)
)+ 0] + 51/ () = f(=0)]
= f(x).

Hence, f(x) is the sum of an even function and an
odd function.

b) If f(x) = E;(x) + O;1(x) where E; is even and O,
is odd, then

E1(x) + 01(x) = f(x) = E(x) + O(x).

Thus E1(x) — E(x) = O(x) — O1(x). The left side
of this equation is an even function and the right side
is an odd function. Hence both sides are both even
and odd, and are therefore identically 0 by Exercise
36. Hence 1 = E and O; = O. This shows that f
can be written in only one way as the sum of an even
function and an odd function.

Section P.6 Polynomials and Rational
Functions (page 45)

x2=TIx+10=(x +5)(x +2)
The roots are —5 and —2.

x2=3x—-10=(x =5 (x +2)
The roots are 5 and —2.

—2+/4-8

If x24+2x 4+2 =0, then x = =—1i.

The roots are —1 4+ and —1 — .
X242 +2=(x+1-i)(x+14+i).

Rather than use the quadratic formula this time, let us
complete the square.

xX2—6x+13=x2—-6x+9+4
= (x—3)*+2?
=(x—3-2i)(x —3+2i).

The roots are 3 4+ 2i and 3 — 2i.

16x* —8x2 4+ 1 = (4x2 —1)2 = (2x — 1)2(2x + 1)2. There
are two double roots: 1/2 and —1/2.

x* +6x3 4+ 9x% = x%(x% 4+ 6x + 9) = x%(x + 3)2. There
are two double roots, 0 and —3.

16 Copyright © 2018 Pearson Canada Inc.



10.

11.

12.

13.

14.

INSTRUCTOR’S SOLUTIONS MANUAL

x3 4+ 1= (x4 1)(x2 —x + 1). One root is —1. The other
two are the solutions of x2 — x 4+ 1 = 0, namely

1+/1—4 1 /3.
X=—=—4+ —|.
2 2 2
‘We have
V3 1 V3
341 = 1 —— = ——+—=i].
x7 4+ x+1D|=x 5 21 x 2—|—21

X —1=2-DE2+1) = (x =D+ Dx—i)x+1).
The roots are 1, —1, i, and —i.

x6 —3x* 4+3x2 -1 =2 -1 = (x = 1)3(x + 1)>. The
roots are 1 and —1, each with multiplicity 3.
X2 —x*—16x +16 = (x — )(x* — 16)
= (- D=4t +4)
=x—-1Dx—-2)(x +2)(x —2i)(x + 2i).
The roots are 1, 2, —2, 2i, and —2i.
AP +8x2 48 =2+ D3 +9)
=@+ —)x+i)(x2—2x +4)

Three of the five roots are —2, i and —i. The remain-

ing two are solutions of x> — 2x + 4 = 0, namely
2+ V4-16
x="—"—""  — —1++/3i. We have

2

X4 x348x24+8 = (x42) (x—i ) (x+i ) (x—a++/3 i) (x—a—~/3 ).

X% —axT —x® 4 axt = (0 —x?—4x3 +4)
X3 -1DKx? -9
=x*x =D =2)(x +2)(x% +x +1).

Seven of the nine roots are: 0 (with multiplicity 4),
1, 2, and —2. The other two roots are solutions of
x2 4+ x + 1 =0, namely

1+J/1-4 1 ,
X=————"=—* —1I.
2 27 2

The required factorization of x° — 4x7 — x® 4 4x* is

x*(x=1)(x=2)(x+2) (x — % + ? i) (x - % - ? i) .

The denominator is x2 + 2x + 2 = (x + 1)2 4+ 1 which is
never 0. Thus the rational function is defined for all real
numbers.

The denominator is x3 —x = x(x —1)(x 4 1) which is zero

if x = 0, 1, or —1. Thus the rational function is defined
for all real numbers except 0, 1, and —1.

15.

16.

17.

18.

19.

22.

SECTION P6 (PAGE 45)

The denominator is x> 4+ x> = x?(x 4 1) which is zero
only if x = 0 or x = —1. Thus the rational function is
defined for all real numbers except O and —1.

The denominator is x2+x—1, which is a quadratic polyno-
mial whose roots can be found with the quadratic formula.
They are x = (—1 £ 4/1 4+ 4)/2. Hence the given rational
function is defined for all real numbers except (—1—+/5)/2
and (—1 + +/3)/2.

x3—l_x3—2x—|—2x—l
x2-2 " x2 -2
_x(x2—2)+2x—1
- x2 -2
_ 2x —1
- +x2—2'
x2 _x2+5x—|—3—5x—3
x24+5x+3 x2+4+5x+3
—5x -3
+x2—|—5x+3'
x3 _x3+2x2+3x—2x2—3x
x24+2x+3 x2+2x+3
_x(x2+2x+3)—2x2—3x
B x24+2x +3
2(x2 +2x +3)—4x — 6+ 3x
- x2+2x+3
=x—2+x7+6.
x2+2x+3
P4 x? x(P a2+ 1) -7 — x4 x?
xX34x241 x3+x2+1
—(3 X2+ D X2+ —x+x?
=x+
x34+x2+1
:x_1+2x2—x+1.
x3+x241
As in Example 6, we want a* = 4,042 = 2
anda = ~2,b = ++2a = =+£2. Thus

P(x) = (x% —2x + 2)(x? 4+ 2x + 2).

Following the method of Example 6, we calculate

(x2=bx+a®)(x*+bx+a?) = x*+a*+(2a%>=b*)x? = x*+x%+1

provided @ = 1 and b2 = —1+2a? =1, so b = £1. Thus
Px)=@2—x+DEZ+x+1).

Let P(x) = apx" + ap_1x" ' + -+ + ayx + ao,
where n > 1. By the Factor Theorem, x — 1 is a factor
of P(x) if and only if P(1) = O, that is, if and only if
an, +ap—1+---+ay+ap=0.

Let P(x) = apx"™ + ap_1x" ' + .-« + a1x + ap, where
n > 1. By the Factor Theorem, x + 1 is a factor of
P(x) if and only if P(—1) = 0, that is, if and only if
ap—ay+az—asz+---+(—1)"a, = 0. This condition says
that the sum of the coefficients of even powers is equal to
the sum of coefficients of odd powers.

Copyright © 2018 Pearson Canada Inc. 17



25.

26.

27.

SECTION P6 (PAGE 45)

Let P(x) = apx" + ap_1x" ' + .- 4+ ayx + ag, where
the coefficients ay, 0 < k < n are all real numbers, so
that @y = aj. Using the facts about conjugates of sums
and products mentioned in the statement of the problem,
we see that if z = x + iy, where x and y are real, then

P(z) =apz™ + an—1z2" 1 +---+ a1z + ap
anZ" + ap1Z" N+ -+ a1z + ao
= P(3).

If z is a root of P, then P(Z) = P(z) =0 =0, and Z is
also a root of P.

By the previous exercise, Z = u — iv is also a root of
P. Therefore P(x) has two linear factors x — u — iv
and x —u + iv. The product of these factors is the real
quadratic factor (x —u)? —i%v? = x2 — 2ux + u? + v2,
which must also be a factor of P(x).

By the previous exercise

P(x)
X2 —2ux +u?+v2

P(x)
(x—u—iv)(x —u+iv)

= 01(x),

where @, being a quotient of two polynomials with real
coefficients, must also have real coefficients. If z = u +iv
is a root of P having multiplicity m > 1, then it must also
be a root of Q; (of multiplicity m — 1), and so, therefore,
Z must be a root of O, as must be the real quadratic

x2 — 2ux + u? + v2. Thus

P(x)
(x2 —2ux 4+ u? 4 v?2)?

-2 0w,

x2 —2ux +u? + v?

where Q5 is a polynomial with real coefficients. We can
continue in this way until we get

P(x)
(x2 —2ux +u2 +v2)m

= Om(x),

where Q,, no longer has z (or Z) as a root. Thus z and Z
must have the same multiplicity as roots of P.

Section P.7 The Trigonometric Functions
(page 57)

3 ( 7[) T 1
cos|— ) =cos|{m——)=—-cos— =——
4 4 4 V2

11. tanx + cotx =

ADAMS and ESSEX: CALCULUS 9

4. sin (%) = sin (% + %)

. T T, T
= sIn — COS — -+ COS — sin —
4 3

4 3
11 V3 1443
22 V22 22
5 2 7w
5. cos— =cos| —— —
(5-%)
2 T L2 . o7
= COS — COS — —+ sin — sin —
3 4 3 4
—-(3)(A)+(F) (%)
2\ 2 NG
VA
242
6. sin — sinl
12 12
T 7w
=§1n(§—z>
1 T T .7
= sin — cos — — cos — sin —
3 3 4
-(3)(A)-6G) ()
2 V2 2 J2
_V3-1
2V/2
7. cos(ﬂ+x)=cos(27r—(7r—x))
= cos(—(n - x))
= cos(r —Xx) = —cos x
8. sin(2w —x) = —sinx

9. sin (%—x) ZS“‘(”_(X_ %))
:sin<x—%>
:—sin<%—x)

= —COS X

3 37 . 3w,
10. cos| — 4+ x| = cos — cosx — sin — sin x
2 2 2

= (—1)(—sinx) = sinx

sin x cos X

cos X sin x

sin? x + cos? x

COS X sin x

1
cos X sin x

18 Copyright © 2018 Pearson Canada Inc.



13.

14.

15.

16.

17.

18.

19.

INSTRUCTOR’S SOLUTIONS MANUAL

tanx — cotx

tan x 4+ cotx -

cos X sin x

sin? x — cos? x
cos X sin x
(sin2 X + cos? x)

= sin? x — cos? x

cos* x —sin* x = (cos? x — sin? x)(cos® x + sin? x)

2 2

= cos” x — sin” x = cos(2x)

(1 —cosx)(1 4+ cosx) = 1 —cos?2x = sin® x implies
1—cosx sin x

- = . Now
sin x 14 cosx
X
1 —cosx 1—cos2(§
sinx sin2<f)
2
1—(1—2sin2(f))
_ 2
X X
2sin — cos —
2 2
X
sin —
= i :tani
cos — 2
2

o (X
1 —cosx 2sin (E) 5 (X
= = tan (—)
1+ cosx 2 cos2 (f) 2
2

cos x — sinx (cos x — sin x)?

cosx +sinx  (cosx + sinx)(cos x — sin x)

cos2 x — 2sinx cos x + sinZ x
cos? x — sin® x
1 —sin(2x)
cos(2x)

= sec(2x) — tan(2x)

sin3x = sin(2x + x)
= sin2x cos x + cos 2x sin x
= 2sinx cos? x + sinx(1 — 2sin? x)
= 2sinx(1 —sin® x) + sinx — 2sin’ x

= 3sinx — 4sin® x

cos3x = cos(2x + x)
= c0s 2x cos X — sin2x sin x
= (2cos? x — 1) cos x — 2 sin® x cos x
=2cos> x —cosx — 2(1— cos? X) cos x

= 4cos> x —3cosx

cos 2x has period 7.

SECTION P7 (PAGE 57)

y A
y = cos(2x)

EAA
T\

20. sing has period 4.

21.

b4 27w x
Fig. P.7-20

sinx has period 2.

1 y = sin(nx)/\ /

y 4

22. cos ? has period 4.

23.

/\ VAN

5\;

Fig. P.7-22

El

¥4 =2 ‘(——)
y cos (x — 3

Copyright © 2018 Pearson Canada Inc. 19



SECTION RP.7 (PAGE 57) ADAMS and ESSEX: CALCULUS 9

24. . 1 3
V4 T 29, sinx=——, w<x<—
y=1+sin<x+—) 2 2
4 3
COSX = ——
2
. 1
anx = —
V3
A Y,
-1
3
25. sinx = —, z<x<7t
5 2
cos X = 5 tanx = 1 Fig. P.7-29
A
1 3
30. tanx = — where x is in |7, 771]. Then,
sec? 1+ L_» Hence
X = - = - ,
4 4
3 5 2
x SECX = ——, COSX = ———,
2 5
XD, g
sinx = tanx cosx = ———.
- NG
Fig. P7-25 -
3. ¢c=2, B=—
- 3
26. tanx = 2 where x is in [0,5]. Then a=ccosB=2x%=1
sec2x =1+tan?x=14+4=5. Pllence, Ne
Secx:\/gandcosx: = —, b=CSiIlB=2XT=\/§
sec x V5
bid
sinx =tanxcosx = —. 32. b=2, B=—
NG 3
2 2
Z=tnB=V3=a=— A
1 a 3 B c
27. cosng, ——<x<0 ) 3 4
—=sinB=—=c¢c=—
NG 2 c 2 3 a b
S‘“:_T:_E 2 T
33. =5 B=-—
V8 ’ 6 ¢
tanx = —— = —22 1 5
1 b=atanB=5%Xx — = —
1, 3 V3
25 10
* c=+va2+b2=,/25+"==—
33
3
—V3 3. sind=2 = a=csind
c
a
35. EztanA=>a=btanA
Fig. P.7-27 36. cosB = a4 =a=ccosB
c
b
5 N 1 37. —=tanB = a=bcotB
28. cosx = BT where x is in [5’ n]. Hence, a
25 12 ing =2 —
sinx = V1 —cos?2x =,/1—— = —, 38. sind c:>C sin A
. 169 13 b
tanx:—?. 39. —=cosA=c=bsecAd
c

20 Copyright © 2018 Pearson Canada Inc.



40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

INSTRUCTOR’S SOLUTIONS MANUAL

sin4 = —
2_p2
sind = — = ¢
c
a
sind = — = ——
Ja? + b2
a=4b=3A="
B bsinA 31 3
sinB=b——=-— = ——
a 42 42
Given that a = 2,b =2,¢ = 3.
Since a? = b? + ¢% — 2bc cos A, A
a®—p2_ 2
COSA:T
_4-4-9 73 V. b
T 2003) 4
B C
a

a=2,b=3,c=4
b? = a2+ %2 —2accos B

44+16-9 11
Thus cosB=+7= —
2x2x4 16

_ \/ 112 J/256—121 /135
sinB=,4/1—— = =
162 16 16

Given thata =2, b =3, C = %

12
c? = a?+b*-2abcos C = 4+9-2(2)(3) cos% =13——.

V2
H 13 12 2.12479
ence, ¢ = - — & 2. X
V2

T T . 5
c=3,A=Z,B:§1mphesC:—

12
@ 3
sin A sinC ﬁsin 5_71
12
31
a= 5 . (T
sin| —
12
3 242
=— V2 (by #5)
V21443
_ 6
1++/3

Given that a =2, b =3, C = 35°. Then
2 =4+ 9—-2(2)(3)cos 35°, hence ¢ ~ 1.78050.

a=4, B=40° C =170°
Thus A = 70°,
b 4

sin 40°
sin 70°

b=4 = 2.736

sind0°  sin70° 0

50.

51.

52.

SECTION P7 (PAGE 57)

in B in A 1
Ifa=1b=2.4=30° then oo = 202 =~
b a 2
2 1 3
ThussinB=£=—,B=zor—n,and
2 V2 4 4
T T 3r 0w b4
C =a—-|— — )= — C=n—|— — = —.
”(4+6) e ”(4+6) 12
7 1-4+/3
Thus, cos C =cos—n :cos<£+z) = \/_or
12 4 3 272
T 7 1+\/§
cosC = cos — = co (———)z .
3 4 22
Hence,

2 =a?+b*—2abcosC
=142-2v2cosC
=3—(1—+3)or3—(1++3)
=243 o0r2—+3.

Hence, ¢ = \/2+\/§0r \/2—\/§.

A BI BH

Fig. P.7-50

Let i be the height of the pole and x be the distance from
C to the base of the pole.

Then h = xtan50° and & = (x + 10) tan 35°

Thus x tan 50° = x tan 35° + 10tan 35° so

10tan 35°

= tan 50° — tan 35°
h— 10 tan 50° tan 35°

= " 1698
tan 50° — tan 35°

The pole is about 16.98 metres high.

See the following diagram. Since tan40° = h/a, therefore
a = h/tan40°. Similarly, b = h/tan70°.
Since a + b = 2 km, therefore,

h h
tan40°  tan70°
_ 2(tan 40° tan 70°)

= ~1.286 km.
tan 70° + tan 40°

Copyright © 2018 Pearson Canada Inc. 21



SECTION P7 (PAGE 57)

Balloon

Fig. P.7-52

ah acsin B

ADAMS and ESSEX: CALCULUS 9

54. From Exercise 53, area = %
a’ +c?—b?

2ac

acsin B. By Cosine Law,

cos B = . Thus,

2 2 12N\2
GinB = \/ - (u)
2ac
_ N—a* —b* —c* +2a2b2 + 2b%c? + 2a2c?
- 2ac ’

—a* —b* — c* + 2a2b2 + 2b2c2 + 2a2¢2
4

Hence, Area =

square units. Since,

1
53. Area AABC = -|BC|h =
2 2 2

1
By symmetry, area AABC also = Ebc sin A

A

Fig. P.7-53

22

absinC
2
s(s—a)(s—=>b)(s—c)

_b+c+a b+c—aa—-b+ca+b—c

N 2 2 2 2
1

= —((b +c¢)? - a2) (a2 — (- 0)2)
16

_ (> 2 2 4 2 232

_E(a ((b+c) T )—a — (=P

= i(2512122 +2a%c? —a* —bp*r -t + 2b202)
16

Thus \/s(s —a)(s —b)(s — ¢) = Area of triangle.

Copyright © 2018 Pearson Canada Inc.



INSTRUCTOR’S SOLUTIONS MANUAL

CHAPTER 1.

Section 1.1 Examples of Velocity, Growth
Rate, and Area (page 63)

Ax  (t+h)?*—1?

A locity = — m/s.
verage velocity A7 W S
h Avg. vel. over [2,2 + h]
1 5.0000
0.1 4.1000
0.01 4.0100 9.
0.001 4.0010
0.0001 4.0001

Guess velocity is v =4 m/s at t = 2 s.
Average velocity on [2,2 + K] is

Q+h?—4 4+4h+h>—4 4h+h*>

4+4h.
Q+h—2 h h +

As h approaches 0 this average velocity approaches 4 m/s

x =3t2—12¢t + 1 m at time ¢ s.
Average velocity over interval [1,2] is
(Bx22-12x2+1)—@Bx12—-12x1+1)

1 = -3 m/s. 10.
Average velocity over interval [2, 3] is
3x32-12x3+1)—(3x22-12x2+1
(3 x ><+;;>< X+)=3m/s.
Average velocity over interval [1, 3] is
Bx32-12x3+1)—Bx12—12x1+1) 0 m
=0 m/s.

3-1
Average velocity over [t,t + h] is

3t+h?—120+h) +1—-(Bt2 =12t + 1)
t+h)—t

_ 6th+3h*—12h

B h

= 6f +3h — 12 m/s.

This average velocity approaches 6¢ — 12 m/s as h ap-
proaches 0.

At t =1 the velocity is 6 x 1 — 12 = —6 m/s.

At t = 2 the velocity is 6 x2 — 12 = 0 m/s.

At t = 3 the velocity is 6 X3 — 12 = 6 m/s.

12.

At t = 1 the velocity is v = —6 < 0 so the particle is
moving to the left.
At t = 2 the velocity is v = 0 so the particle is stationary.

At t = 3 the velocity is v = 6 > 0 so the particle is 13.

moving to the right.

LIMITS AND CONTINUITY 8.

11.

SECTION 1.1 (PAGE 63)

Average velocity over [t —k,t + k] is

3t +k)2—12(t+ k) +1 =3¢ —k)?>—12(t —k) + 1]
t+k)—(@—k)

1
- ﬁ(3z2+6tk+3k2— 126 — 12k + 1 — 3¢% + 61k — 3k2

+12:—12k+1)

12tk — 24k

=6f—12
Y 6t m/s,

which is the velocity at time ¢ from Exercise 7.

1
y =2+ —sin(nt)
T

NN
w4
~

2 3
Fig. 1.1-9

O P

At ¢t = 1 the height is y = 2 ft and the weight is
moving downward.

Average velocity over 1,1+ h] is

1 1
2+ —sinw(l + h) — (2+ —sinn)
7 7

h
_sin(wr +h) _ sinmcos(rwh) + cos x sin(rh)
B mh - mh
sin(rrh)
xh
h Avg. vel. on [1,1 + A]
1.0000 0
0.1000 -0.983631643
0.0100 -0.999835515
0.0010 -0.999998355
The velocity at t+ = 1 is about v = —1 ft/s. The “—”

indicates that the weight is moving downward.

We sketched a tangent line to the graph on page 55 in
the text at + = 20. The line appeared to pass through
the points (10,0) and (50, 1). On day 20 the biomass is
growing at about (1 —0)/(50 — 10) = 0.025 mm?2/d.

The curve is steepest, and therefore the biomass is growing
most rapidly, at about day 45.

Copyright © 2018 Pearson Canada Inc. 23



SECTION 1.1 (PAGE 63)

14, 2) profit

175 4
150 +
125 +
100 +
5+
50 +

25 +
» year

2011 2012 2013 2014 2015
Fig. 1.1-14

b) Average rate of increase in profits between 2010 and

2012 is
174 — 62 112

2012-2010 2
¢) Drawing a tangent line to the graph in (a) at

t = 2010 and measuring its slope, we find that the

rate of increase of profits in 2010 is about 43 thou-

sand$/year.

= 56 (thousand$/yr).

Section 1.2 Limits of Functions (page 71)

1. From inspecting the graph

Fig. 1.2-1
we see that

Jlim £ =1, lim f() =0, lim f(x) = 1.

2. From inspecting the graph
y

Fig. 1.2-2

we see that

lim g(x) does not exist
x—1

(left limit is 1, right limit is 0)

lim g(x) =1, lim g(x) = 0.
x—2 x—3

w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

ADAMS and ESSEX: CALCULUS 9

lim g(x) =1

x—1—

xghﬂn

xg;an

xX—>3—

lim (x2 —4x + 1) = 4> —4(4) + 1 = 1
x—4

lim 3(1 —x)(2 —x) =3(-1)2—=2) =0
x—>2

X+3 343 2

lim =
x=>3x+6 3+6 3

l2 (_4)2

1
lim = lim (x—1)=-2
x——1 x + 1 x—>—1

(x —3)?
*23 (x — 3)(x + 3)

o x2—6x+4+9
lim ——— =
x—>3 x2-9

.o x=3 0
= lim =-=0
x—>3x+3 6

o x242x . X -2 1
lim = lim = =
x—>—2 x2 — x—>-2x—2 —4 2

. 1 . .
limy, ., ) does not exist; denominator approaches 0

but numerator does not approach 0.

i 3h+4h* 344k d ¢ exist d

im ——— = lim oes not exist; denomi-
MO TR T o h—h?

nator approaches 0 but numerator does not approach 0.

VA3 (VA=A H3)

lim = lim ———

x—>9 x—9 x—>9 (x —9)(/x +3)
5 x—9 i 1 1
= lm-——=1Im — = -
=9 (x —9N(V/x+3) x>9./x+3 6

. NA+h-2

lim ——

h—0 h

i 4+h—4
= lim ————
h—>0 h(V&+h +2)
1 1
= lim —— = -
h—>0 A+ h+2 4

(x —m)? _ 0?

lim ——— = — =0
X7 WX b1
lim |[x—2|=|—4]=4
x—>—2

-2 -2
im 22 122
x>0 x —2 -2

24 Copyright © 2018 Pearson Canada Inc.



22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

INSTRUCTOR’S SOLUTIONS MANUAL

Cox=20 1, ifx>2

lim = lim .
x—=>2 x—2 x—2 | —1, if x <2.

. |x=2] .
Hence, lim ——— does not exist.
x—>2 x —2

, 2 —1

lim ——

t—>112 -2t +1

-0 +1) .o t+1 .

im ————————~ = lim —— does not exist
t>1 (1 —1)2 t—>11—1

(denominator — 0, numerator — 2.)

lim
x—2 x =2
. x =2 .
= lim ——— does not exist.
x—=2 X —2
i ! i t(Vad+t+Vd—1)
im = lim
=0 i+t —a—t =0 (44+1)—(4—-1)
L NA+t VAt
=lim ——M =2
t—>0 2
) x2—1 x=Dx+DWx+3+2)
lim = lim
x=>1/x4+3-2 x—1 (x+3)—4

:)}i_)1111(x+1)(«/x+3+2):(2)(x/4_1+2):8

i t2 4 3t
im-——
t—>0 (t +2)2 — (r —2)2
. tir+3)
= lim
=012 4+ 41 +4—(12—41+4)
. t+3 3
=lim — = -
t—0 8 8
D2 —(s—1)? 4
1imw:1im_s:4
s—0 s s—=>0 S
—4 3
hm%
y—1 -1
— lim W-bWw=3 2 -1
1Y -DY+D+1D) 4 2
x3+1

im
x——1 x+1
o (x+DEZ=x+D
= lim =3
x——1 x+1

. ox*—16
lim
x—2 x3 -8
_ (x=2)(x +2)(x%2 +4)
T xo2 (x—2)(x2 +2x 4+ 4)

_ @) _8
4+4+4 3
x2/3 —4

)}‘_,Hg x1/3 -2

C o &P =2 42)
x—8 (x1/3 -2)

= lim(x'/? +2) =4
x—8

33.

34.

35.

36.

37.

38.

39.

SECTION 1.2 (PAGE 71)

. 1 4
lim —_
x—=2\x—-2 x2-4

x+2-—-4 . 1 1

:1 =
xl—r>n2(x—2)(x+2) xglzx+2 4

lim -
x=2\x—2 x2—-4

. x+2—-1

lim —M—

x=2 (x =2)(x +2)
i x+1

= lim ———
x=2 (x = 2)(x +2)

does not exist.

y V24 x2—2—x2
im

x—0 x2
- Q+x)-2-x?
x—>0 x2( /2 + x2 + /2—x2)

. 2x2
= lim

x=>0 xz(\/2+x2)+ \/Z—xz)
_ 2 1

V2+V2 V2

o Bx—=1]—13x + 1]
lim ——MM
x—>0 X
Bx —1)2—(Bx + 1)
=1l
x—0x (|13x — 1| + |3x + 1))
—12x

= lim = = _
x>0 x (|3x —1|+[3x+1) 1+1

f(x) = x?
S - ) L (xR —x?
lim = lim
h—0 h h—0 h
2
e U N A
h—0 h—0
fx)=x°
S+ - fx) (x4 k) =3
lim = lim
h—0 h h—0 h
o 3xZh 4+ 3xh2 + W3
= lim ——M—
h—0 h

= }}in}) 3x2 4+ 3xh 4+ h? = 3x?

flx)=1/x
1 _1
i S+ —fx) . x+h «x
im = lim
h—0 h h—0 h
x—(x+h)
= lim ——=
h—>0 h(x + h)x
1 1

0 (x + h)x x2

Copyright © 2018 Pearson Canada Inc. 25



SECTION 1.2 (PAGE 71)

40. f(x) =1/x?
1 1
. f+h) - fx) . (x+ k)2 x2
lim = lim
h—0 h h—0 h
x2 — (x2 +2xh + h?)

250 h(x + h)2x2
2x +h 2x 2
= m --———=—-—-——=——
=0 (x + h)2x2 x4 x3
41. f(x) = x
St - f) L My +Hh—Jx
lim = lim
h—0 h h—0 h
. X+h—x
= lim —————————
h—0 h(v/x + I + /)

1 1
=0 /x + 1+ Jx  2Jx

42. fx) =1/Jx
1 1
lim LOEN S0 SAER VR
h—0 h h—0 h
= lim VEoVxih
C h—0 hyxNx +h

— lim x—((x+h)
=0 h/xXVX + h(Jx 4+ VX + h)
~1

= lim
h=0 /XX + h(JX + v/x + h)
-1
= 2332

43. lim sinx =sinz/2 =1
x—>m/2

44. lim cosx =cosw/4=1/2

x—>m/4

45. lim cosx =cosm/3 =1/2
x—m/3

46. lim sinx =sin27/3 = +/3/2

x—>2m/3
47.
X (sinx)/x

+1.0 0.84147098

+0.1 0.99833417

40.01 0.99998333
+0.001 0.99999983
0.0001 1.00000000

sin x

It appears that lim
xX—> X

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

ADAMS and ESSEX: CALCULUS 9

X (1 —cosx)/x?
+1.0 0.45969769
+0.1 0.49958347
+0.01 0.49999583

+0.001 0.49999996
0.0001 0.50000000

. l—cosx 1
It appears that lim ——— = —.
x—>0

x2 2
Iim v2—x =0

xX—>2—

lim +/2—x does not exist.
x—2+

lim ~/2—x=2

xX—>—2—

lim 2—x=2
x—>—2+

lim v/ x3 — x does not exist.

x—0
(X3 —x<0if0<x<1)

lim vx3—x=0

x—>0—

lim ~x3 — x does not exist. (See # 9.)
x—>0+

lim vVx2—-x4=0

x—>0+

|x —al

xl—lgll— x2 —q?
. |x —al 1
= lim —mM8M = ——
x—a— (x —a)(x + a) 2a
. |x —al . xX—a 1
lim = lim ——— = —
x—a+ x2 —a? 2a

.o x2—4 0
Iim ——=-=0
x—>2—|x +2| 4
x2—4 0
4

im =-=
x—2+ |x + 2|

if x <—1

x24+1  if-1<x<0
(x+m)? ifx>0

lim f(x)= lm x—-1=-1-1=-2
x—>—1— x—>—1—

x—1

f(x) =

. _ . 2 _ _
xl{nprf(x)_xi{nwx +1=14+1=2
li = li Z=n"
x—1>I{)1+ f(X) x—l>r(I)l+(x + ]T) d
lim f(x)= lim x>+1=1
x—>0— x—>0—
If lim f(x) =2 and lim g(x) = —3, then
x—4 x—4
a) lim(g(x)+3> - 343=0
x—4

b) lim xf(x) =4x2=238
x—4

26 Copyright © 2018 Pearson Canada Inc.



66.

67.

68.

69.

INSTRUCTOR’S SOLUTIONS MANUAL

o lim (g(x))2 = (=32 =9 70.

. gx) 3
LRI S

If imx — a f(x) =4 and li_r)n g(x) = =2, then
@) Jim (f(x) +g(0) = 4+ (-2) =2

b) lim f(x) g(x) =4 x (-2) = -8

9] )}1_1)12 4g(x) = 4(-2) = -8

4
O 1im L0 -4,
x—>a g(x) -2
71.
-5
If lim & = 3, then
x—>2 x—2
. . fx) =5 _ .
)}L)nlz(f(x) 5) = lim S (r—-2) =32 -2) =0,
Thus limy_» f(x) = 5.
if tim 2% = 3 then
x—>0 X
limyso () = limyso 62 L2 —0x (<2) = 0,
x .
and similarly, limy_,o J) = lim x f(_;c) =0x(-2) =0.
X x—0 X
72.
y

Fig. 1.2-69

sin x

lim
x—=0 X

SECTION 1.2 (PAGE 71)

0.6 +
_ sin(27x)

041 YT sin(37x)

I y y y y y y >

004 0.04
024+

-0.08

04 1

Fig. 1.2-70

limy o sin(2zx)/ sin(3wx) = 2/3

Y 4

~—
0.8 \
0.7 4

0.6+ _sinv1l—x

0.5+ Y V1 —x2

04+
03+
0.2 +
0.1+

-0.2 1

04

-0.6 4
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73.

74.

75.

76.

77.

SECTION 1.2 (PAGE 71)

Y 4

y=—x

_y = xsin(1/
0.1 -

021
Fig. 1.2-73

f(x) = xsin(1/x) oscillates infinitely often as x ap-
proaches 0, but the amplitude of the oscillations decreases
and, in fact, limy_¢ f(x) = 0. This is predictable because
|x sin(1/x)| < |x|. (See Exercise 95 below.)

Since v5—2x2 < f(x) < +/5—x2 for =1 < x <1, and
limy—o v/5 —2x2 = limy—g V5 — x2 = /5, we have
limy_¢ f(x) = +/5 by the squeeze theorem.

Since 2 — x? < g(x) < 2cosx for all x, and since

limy0(2 — x2) = limx_g2cosx = 2, we have
limy—o g(x) = 2 by the squeeze theorem.
a)

Fig. 1.2-76

b) Since the graph of f lies between those of x? and
x*, and since these latter graphs come together at
(£1,1) and at (0,0), we have limy—+; f(x) =1 and
limy o f(x) = 0 by the squeeze theorem.

1/3 1/3 3

X < x3 on (=1,0) and (1,00). x/3 > x3 on
(=00, —1) and (0, 1). The graphs of x'/3 and x3 inter-
sect at (—1,—1), (0,0), and (1, 1). If the graph of h(x)
lies between those of x!/3 and x3, then we can determine
limy—q h(x) fora = —1,a = 0, and @ = 1 by the
squeeze theorem. In fact

lim h(x) =-—1, lim h(x) =0, lim h(x) =1.
x—>—1 x—0 x—>1

78.

79.

ADAMS and ESSEX: CALCULUS 9

1
f(x) = s sin— is defined for all x # 0; its domain is
x

(—00,0) U (0,00). Since |sint| < 1 for all ¢, we have
|f(x)] < |x| and —|x|] < f(x) < |x| for all x # O.
Since limxy—o = (=|x|]) = 0 = limy—¢ |x|, we have
limy 0 f(x) = 0 by the squeeze theorem.

|f(0)] < g(x) = —g(x) = f(x) < g(x)

Since lim g(x) = 0, therefore 0 < lim f(x) < 0.
xX—>a xX—a
Hence, lim f(x) = 0.
xX—>a
If lim g(x) = 3, then either =3 < lim f(x) < 3 or
xX—>a xX—a

limyx_, f(x) does not exist.

Section 1.3 Limits at Infinity and Infinite
Limits (page 78)

1

- lim — =

¥ooo2x —3  xe02— (3/x) 2

. X 1/x 0
lim = lim

1 7:—:0
x>00x2 — 4 x—oo | —(4/x2) 1

3x3 —5x2 47
im ———
x—>00 8+ 2x —5x37
3——+ x—3 3
= lim = ——
x—>o00 8 2 5
x3 + X2 >
2_2
lim 5
X—>—00 X — X
! 2
T2 1
lim . |
x——oo 1 -1
——1
X
1 3
x2+3 3,
x——00 x3 +2  x—>—00 2
1+ =
X
sin x
2 .
. x“+sinx X2 _1_
A % b cosx T avme )y CO5% T 1!
X2
. sin x .
We have used the fact that limy o — = 0 (and sim-

ilarly for cosine) because the numerator is bounded while
the denominator grows large.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.
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X 2x —1
lim ——— 25.
¥>00 \/3x2 + x + 1
(-5
x|{2——
= lim al (but |x| = x as x — 00)
X—>00 1 1
|x] 3+—+—2
X X
2=
2
— 1 X - = 26.
xlggo 1 J3
3+ -+ =
X X
2x —1
lim 27.
x>=00 /3x2 4 x +11
2_
X—>—00
—3+t-+=
X X
because x — —oo implies that x < 0 and so v/x? = —x.
2x =5 2x —5 2

hm —_— m — = ——
x——00 [3x + 2| x——o00 —(3x + 2) 3

28.
lim does not exist.
xX—=>33—X
i 1 29.
i ST I
. 1
lim =00
x—=3—3—Xx
. 1
lim = —00
x—>3+3—x
2x +5 0
im = =0
x—>-5/25x +2 =25
— +2
2 30
2x +5 . :
im ——— does not exist.
x—>—2/55x +2
2x +5
im =—
x—>—(2/5)— 5x + 2
2x +5
im =00
x—>—2/54+ 5x + 2
. X
im —— = —
x=>2+ (2 —x)3
lim ——— =
x—1>nil—4/1_x2 = 31
lim —— =
x—>1+ |x — 1]
im =00
x—1— |x — 1]
. x—3 x—3
lim ——— = lim ———— = -
x>2x2—4x +4  x-2(x —2)>2
X2 —x -1
li = lim —— — — 32.
x—l>ril+ x—x2 x—l>ril+ 4/)CZ_X o

SECTION 1.3 (PAGE 78)

x+x34+x°
im ——————
x—>00 1 4+ x2 + x3

1 2
—2+1+x
X
= lim &=— =
x—>001 1
S +-+1
X
3
)C3—|—3_ X+x—2_
e x2 12 xoo 2 -
I+ 3
xV/x+1(1-42x+3)
o o8 7 — 6x + 4x2

—2x2
lim lim —=

2 .X2
x—o00 \ x + 1 x—1 x—o00 x2 — 1

lim (\/x2 +2x —/x2 - 2x)
X—>—00
. (x% 4 2x) — (x% —2x)
= lim
x>0 /X2 £ 2x + /x2 —2x

. 4x
= lim
X—>—00 2 2
(—x) I+ —4+,4/1—--—
X X
4

-2

NET

(x/x2 +2x — V/x2 —2x)
x2 4+ 2x —x2 +2x
im
x=00 \[x2 4 2x4—|— Vx2 = 2x
X

= lim

X—>00 2 2
Xq/l4+—=4+x41==
X X
. 4 4
= lim =-=2
2 2 2
1+—+4/1——
X X
1
lim

X—>00
X0 /x2 —2x —x
, VX2 —-2x +x
= lim
X2 (/x2 = 2x + x)(Vx2 —2x — x)
oAxZ=2x+x
e s
x—o00 x%2 —2x — X
X(JTI=@/0)+1) 2
—2x T2

lim
X—>00

= lim

X—>00

=-1

1 1
lim ————— = lim =0
X>=00 /x2 4 2x —x X270 |x|({/1+ (2/x) + 1
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33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

SECTION 1.3 (PAGE 78)

By Exercise 35, y = —1 is a horizontal asymptote (at the
1
right) of y = ————_ Since
Vx2—2x —x

lim

1 1
- — lim =0
X200 \/x2 —2x —x 77 |x|(y/1-(2/x)+1

y = 0 is also a horizontal asymptote (at the left).
Now +/x2 —2x — x = 0 if and only if x2 — 2x = x2, that
is, if and only if x = 0. The given function is undefined
at x = 0, and where x2 — 2x < 0, that is, on the inter-
val [0,2]. Its only vertical asymptote is at x = 0, where

1

limy 59— —— = 00.
7 Vx2—-2x—x
2x =5 2 2x—5 2
Since lim ARl = —and lim ARNEE = ——,
x—00 |3x + 2| 3 x—>—00 [3x + 2| 3

y = =£(2/3) are horizontal asymptotes of
y = (2x —5)/|3x + 2|. The only vertical asymptote is
x = —2/3, which makes the denominator zero.

li =1
A, )

lim f(x) = o0

x—>1

Fig. 1.3-37

limy—o4 f(x) =1

i /9=

iy 1ts) =0
iy, ) = oo

Jim, ) =2
i 7ts) =0
iy 7)==

Jim, 1) =0

45.

46.

47.

48.

50.

51.

52.

53.

54.

55.

ADAMS and ESSEX

di 7 =1

horizontal: y = 1; vertical: x =1, x = 3.

1' =
i by =3
lim |x| =2
x—>3—

lim | x| does not exist
x—>3

lim |[x] =2
x»Z.SL J

x—1>r(r)l+|' XJ x—1>nZ]— LXJ

lim |x| =—4
xX—>—3—
lim C(t) = C(tp) except at integers tg
t—to

lim C(t) = C(tp) everywhere
t—>to—

lim C(t) = C(t) if o # an integer
t—to+

lim C(t) = C(t9) + 1.5 if o is an integer
t—>to+

6.00 | o—
4.50 o—e
200 y=C@

o0—e
1.50 I—O

: CALCULUS 9

T 1 2 3

Fig. 13-53

li =1L
xir(r)lJr f(X)

(a) If f is even, then f(—x) = f(x)

Hence, lim f(x)= L.
x—>0—

(b) If f is odd, then f(—x) = —f(x).

Therefore, lim f(x) = —L.
x—0—
li =A li (x) =B
x—1>r(r)]+ f(X) ’ x—1>n(}— f(x)

a) lim f(x*>—x)= B (since x>
x—>0+

b) lim f(x3>—x) = A (because x
x—>0—

—1<x<0)

¢ lim f(x2—xH=4
x—>0—

d) lim f(x? —x* = A (since x
x—>0+
0<|x|<1)

30 Copyright © 2018 Pearson Canada Inc.

3

2

—x<0if0<x <)

—x>0if

— X

4

> 0 for



INSTRUCTOR’S SOLUTIONS MANUAL

Section 1.4 Continuity (page 87)

g is continuous at x = —2, discontinuous at x = —1, 0,1,
and 2. It is left continuous at x = 0 and right continuous
at x = 1.

Fig. 14-1

g has removable discontinuities at x = —1 and x = 2.
Redefine g(—1) = 1 and g(2) = 0 to make g continuous
at those points.

g has no absolute maximum value on [—2,2]. It takes on
every positive real value less than 2, but does not take the
value 2. It has absolute minimum value O on that interval,
assuming this value at the three points x = -2, x = —1,
and x = 1.

Function f is discontinuous at x = 1, 2, 3, 4, and 5. f
is left continuous at x = 4 and right continuous at x = 2
and x = 5.

Y :

Fig. 1.4-4

f cannot be redefined at x = 1 to become continuous
there because limy_,; f(x) (= oo) does not exist. (co is
not a real number.)

sgnx is not defined at x = 0, so cannot be either contin-
uous or discontinuous there. (Functions can be continuous
or discontinuous only at points in their domains!)

x ifx<0
Jx) = x2 ifx>0
real line, even at x = 0 where its left and right limits are

both 0, which is £(0).

is continuous everywhere on the

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

SECTION 1.4 (PAGE 87)

x  ifx<-—l1

x) = .
f&) x2 ifx>—1
real line except at x = —1 where it is right continuous, but

not left continuous.

is continuous everywhere on the

lim f(x)= lim x=-1#1
x—>—1— x—>—1—

= f(-1) = i 2 _
f( ) xJHl1+x

lim  f(x).

x—>—1+
_J1/x? ifx#0
/) {O if x =

at x = 0, where it is neither left nor right continuous since
it does not have a real limit there.

is continuous everywhere except

2 .
flx) = %x Tf X =1 s continuous everywhere ex-
0.987 ifx>1
cept at x = 1, where it is left continuous but not right

continuous because 0.987 # 1. Close, as they say, but no
cigar.

The least integer function [x] is continuous everywhere on
R except at the integers, where it is left continuous but not
right continuous.

C(t) is discontinuous only at the integers. It is continuous
on the left at the integers, but not on the right.

2
x2 —
Since = x + 2 for x # 2, we can define the
X

function tg be 2 4+ 2 = 4 at x = 2 to make it continuous
there. The continuous extension is x + 2.

1+ A+ —1+13)  1—1+12
1—-2~  (Q4+nd-1 = 1-—t

t # —1, we can define the function to be 3/2 at t = —1

to make i% continuous there. The continuous extension is
1—t+1¢

1—1¢
2-5+6 (1—-2)t—-3) 1-2

= = for t # 3,
t2—1t—6 t+2)t—23) t+2 or . 7
we can define the function to be 1/5 at + = 3 to make it

Since or

Since

t—2
continuous there. The continuous extension is Y
Since
x2—2_ (x—«/i)(x—}-«/i) X+ 2

=4 =V VDAY (VD2 +2)
for x # +/2, we can define the function to be 1/4 at
X = +/2 to make it continuous there. The continuous

x4+ 2
(x +V2)(x2 +2)
x + +/2 factors provides a further continuous extension to

x=—v2.

limy_o4+ f(x) = k —4 and limy—5— f(x) = 4 = f(2).
Thus f will be continuous at x = 2 if k — 4 = 4, that is,
if k =8.

extension is . (Note: cancelling the

limy 53— g(x) = 3 - m
and limy_34 g(x) = 1 —3m = g(3). Thus g will be
continuous at x = 3 if 3—m = 1—3m, that is, if m = —1.
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19.

20.

21.

22,

23.

24.

25.

26.

27.

SECTION 1.4 (PAGE 87)

x2 has no maximum value on —1 < x < 1; it takes all
positive real values less than 1, but it does not take the
value 1. It does have a minimum value, namely O taken on
at x = 0.

The Max-Min Theorem says that a continuous function
defined on a closed, finite interval must have maximum
and minimum values. It does not say that other functions
cannot have such values. The Heaviside function is not
continuous on [—1, 1] (because it is discontinuous at

x = 0), but it still has maximum and minimum values. Do
not confuse a theorem with its converse.

Let the numbers be x and y, where x > 0, y > 0, and
x +y = 8. If P is the product of the numbers, then

P=xy=x@B8-—x)=8x—x2=16—(x —4)2.
Therefore P < 16, so P is bounded. Clearly P = 16 if
x =y =4, so the largest value of P is 16.
Let the numbers be x and y, where x > 0, y > 0, and
x +y =28. If S is the sum of their squares then

S=x2+y2=x2+(8-x)?
=2x% — 16x + 64 = 2(x — 4)% + 32.

Since 0 < x < 8, the maximum value of S occurs at

x =0 or x = 8, and is 64. The minimum value occurs at
x = 4 and is 32.

Since T = 100 — 30x + 3x? = 3(x — 5)%2 + 25, T will
be minimum when x = 5. Five programmers should be
assigned, and the project will be completed in 25 days.

If x desks are shipped, the shipping cost per desk is

245x — 30x2 3
o = 245 —30x% 4+ i3

= x2 —30x + 245
X
= (x — 15)2 4+ 20.
This cost is minimized if x = 15. The manufacturer

should send 15 desks in each shipment, and the shipping
cost will then be $20 per desk.

2
Fx) = X - 1 _ (x l)x(x—l—l)
f =0atx==1. f is not defined at 0.
f(x) >0 on (—1,0) and (1, 00).
f(x) <0 on (—oo,—1) and (0, 1).

f)=x24+4x+3=(x+1(x+3)
f(x) >0 on (—o0,—3) and (—1, c0)
f(x) <0on (-3,—1).

x2—1 x—Dx+1

S = ¥2—4 (x-2)(x+2)
f=0atx==l.

f is not defined at x = £2.

f(x) >0 on (—o0,-2), (—1,1), and (2, 00).
f(x) <0on (—=2,—1) and (1,2).

28.

29.

30.

31.

32.

33.

34.

35.
36.
37.
38.
39.
40.
41.
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24+x-2 (x+2x-1
Sx) = 3 = 3

X
f(x) >0 on (—2,0) and (1, co0)

f(x) <0 on (—o0,—2) and (0, 1).

f)=x34+x—-1, f0) =1, f(1) = 1.

Since f is continuous and changes sign between 0 and 1,
it must be zero at some point between 0 and 1 by IVT.

f(x) = x3 —15x + 1 is continuous everywhere.

f(=4) ==3, f(=3) =19, f(1) =—-13, f(4) =5.
Because of the sign changes f has a zero between —4 and
—3, another zero between —3 and 1, and another between
1 and 4.

F(x) = (x —a)?(x — b)?> + x. Without loss of generality,
we can assume that ¢ < b. Being a polynomial, F is
continuous on [a,b]. Also F(a) = a and F(b) = b.
Since a < %(a + b) < b, the Intermediate-Value Theorem
guarantees that there is an x in (a, b) such that
F(x)=(a+Db)/2.

Let g(x) = f(x) —x. Since 0 < f(x) <1if0<x <1,
therefore, g(0) > 0 and g(1) < 0. If g(0) = 0let c =0,
or if g(1) =0 let ¢ = 1. (In either case f(c) =c.)
Otherwise, g(0) > 0 and g(1) < 0, and, by IVT, there
exists ¢ in (0, 1) such that g(c) =0, i.e., f(c) =c.

The domain of an even function is symmetric about the
y-axis. Since f is continuous on the right at x = 0,
therefore it must be defined on an interval [0, 4] for some
h > 0. Being even, f must therefore be defined on
[=h,h]. If x = —y, then

li (x)= 1 (—y) = 1 = f(0).
Jm fe) = lim f(-y) = lim f(y)= /()
Thus, f is continuous on the left at x = 0. Being contin-

uous on both sides, it is therefore continuous.

fodd & f(=x) = —f(x)

f continuous on the right <& lim f(x) = f(0)
x—>0+

Therefore, letting t = —x, we obtain

xirg— Jx) = tl_i)%l_’_ J=n = tl—i>%1+ —/0
=—/(0) = f(=0) = f(0).

Therefore f is continuous at 0 and f(0) = 0.

max 1.593 at —0.831, min —0.756 at 0.629

max 0.133 at x = 1.437; min —0.232 at x = —1.805
max 10.333 at x = 3; min 4.762 at x = 1.260

max 1.510 at x = 0.465; min 0 at x =0 and x = 1

root x = 0.682
root x = 0.739
roots x = —0.637 and x = 1.410
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43.
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roots x = —0.7244919590 and x = 1.220744085

fsolve gives an approximation to the single real root to 10
significant figures; solve gives the three roots (including a
complex conjugate pair) in exact form involving the quan-
tity (108 + 12«/@)1/3; evalf(solve) gives approximations
to the three roots using 10 significant figures for the real
and imaginary parts.

Section 1.5 The Formal Definition of Limit
(page 92)

We require 39.9 < L < 40.1. Thus

39.9 <39.6 +0.025T < 40.1
0.3 <0.025T <0.5
12 <T <20.

The temperature should be kept between 12 °C and 20°C.

Since 1.2% of 8,000 is 96, we require the edge length x
of the cube to satisfy 7904 < x3 < 8096. It is sufficient
that 19.920 < x < 20.079. The edge of the cube must be
within 0.079 cm of 20 cm.

3-0.02<2x—-1<340.02
3.98 <2x <4.02
1.99 <x <2.01

4-01<x?><4+40.1
1.9749 < x < 2.0024

1-0.1</x<11
081 <x <121

—-2-001 < - <-240.01

= | =

e S p—
201 — & 199
—0.5025 < x < —0.4975

We need —0.03 < (3x + 1) — 7 < 0.03, which is equivalent
to —0.01 < x —2 < 0.01 Thus 6 = 0.01 will do.

We need —0.01 < +/2x +3 —3 < 0.01. Thus

2.99 < /2x +3<3.01

8.9401 < 2x + 3 < 9.0601
2.97005 < x < 3.03005

3—0.02995 < x — 3 < 0.03005.

Here § = 0.02995 will do.

We need 8 — 0.2 < x3 < 8.2, or 1.9832 < x < 2.0165.
Thus, we need —0.0168 < x — 2 < 0.0165. Here
§ = 0.0165 will do.

10.

11.

12.

13.

14.

15.

16.

17.
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Weneed 1 —0.05 < 1/(x +1) < 1 + 0.05,
or 1.0526 > x + 1 > 0.9524. This will occur if
—0.0476 < x < 0.0526. In this case we can take
5 = 0.0476.

To be proved: 1im1(3x +1)=4.

x—>
Proof: Let € > 0 be given. Then |(3x + 1) — 4| < € holds
if 3|]x — 1| <€, and so if |[x — 1| < § = €¢/3. This confirms
the limit.
To be proved: lim (5 —2x) = 1.

x—2
Proof: Let € > 0 be given. Then |(5 —2x) — 1| < € holds
if |2x —4| <€, and so if |x —2| < § = €/2. This confirms
the limit.

To be proved: lim x2 = 0.
x—>0

Let € > 0 be given. Then |x? — 0| < € holds if
|x =0 = |x| <& = J[e.

fim 22 =0

x1—>rnZ 14+ x2 -

Proof: Let € > 0 be given. Then

To be proved:

|x =2
= <|x—=2|<e
1+ x2

x—2
1+ x2

provided |x — 2| < § =e.

L 1—4x?
To be proved: lim =
x—>1/2 1 —2x

Proof: Let € > 0 be given. Then if x # 1/2 we have

‘1—4x2

2l=104+2x)=2|=2x—1]| =2
1 —2x

1
xX—z|<e€
2

provided |x — %| <8 =¢€/2.

. x2 +2x
To be proved: lim =-2.
x—>—2 x+2
Proof: Let € > 0 be given. For x # —2 we have
2
x° 4+ 2x
—(2)|=|x+2|<e
— )’ I +2]

provided |x + 2| < § = €. This completes the proof.

1 1
To be proved: lim = —.
x—>1x+1 2
Proof: Let € > 0 be given. We have
1 I | 1=x | |x—1]
x+1 2] [2x4+1)| 2k +1]

If[x—1|<1,then0<x <2and 1 <x + 1< 3, so that
|x + 1| > 1. Let § = min(1,2¢). If |x — 1| < §, then

1 1’_ x—1] 2

— | = < — =
x+1 2 2|x + 1] 2

This establishes the required limit.

Copyright © 2018 Pearson Canada Inc. 33



18.

19.

20.

21.

22,

23.

24,

SECTION 1.5 (PAGE 92)

lim =——.
x—>—-1x2—1 2
Proof: Let € > 0 be given. If x # —1, we have

x+1 1\ | 1 | x+1]
x2—1 2] |x—1 2] 2x—11°

If [x+ 1| <1,then -2 <x <0,s0 -3 <x—1<—1 and

To be proved:

|x —1] > 1. Ler § = min(1,2¢). If 0 < |x — (=1)| < 8 26.

then |[x — 1| > 1 and |x + 1| < 2¢. Thus

x+1 ( 1)‘_|x+1| 2¢

- | == — < —
x2—1 2 Ax—1] 2

This completes the required proof.

To be proved: lim /x = 1. 217.
x—1

Proof: Let € > 0 be given. We have

x—1
Jx + 1

provided |x — 1| < § = €. This completes the proof.

|Vx —1| = <|x—-1]<e

To be proved: lim x> = 8.

x—2
Proof: Let € > 0 be given. We have
|x3—8| = [x—2||x2+2x+4|. If [x—2| <1, then | < x <3
and x% < 9. Therefore [x% +2x +4| <942x3+4 = 19.
If |x — 2| <8 = min(1, €/19), then

29.

|x3—8|:|x—2||x2+2x+4|<1i9><19:6.

This completes the proof.

We say that limy_,,— f(x) = L if the following condition
holds: for every number € > 0 there exists a number
8 > 0, depending on €, such that

a—38 <x<a implies

|f(x)—L| <e.

30.

We say that limy—_o f(x) = L if the following condition
holds: for every number € > O there exists a number

R > 0, depending on €, such that 31

x < —R implies

|f(x) - L| <e.

We say that limy_,, f(x) = —oo if the following condi-
tion holds: for every number B > 0 there exists a number
8 > 0, depending on B, such that

0<|x—al<d implies

f(x) < —B.

We say that limy_co f(x) = o0 if the following condition
holds: for every number B > 0 there exists a number
R > 0, depending on B, such that

x > R implies

f(x) > B.

x+1 1 25

28.
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We say that limy—,+ f(x) = —oo if the following condi-
tion holds: for every number B > O there exists a number
§ > 0, depending on R, such that

a<x<a-+4§ implies

f(x) <—B.

We say that limy_.,— f(x) = oo if the following condition
holds: for every number B > 0 there exists a number
8 > 0, depending on B, such that

a—§8§<x<a implies

f(x) > B.

To be proved: limy_j4 = 00. Proof: Let B > 0

x—1
1
be given. We have 7 > Bif0 <x—1< 1/B, that

X —
is, if 1 < x < 14§, where § = 1/B. This completes the
proof.

To be proved: limy—1— = —00. Proof: Let B > 0

x—1
be given. We have <—-Bif0>x—-1>—-1/B,

X —
that is, if 1 —8§ < x < 1, where § = 1/B.. This completes
the proof.

1

271 = 0. Proof: Lete > 0
x* +

To be proved: limy_sso

be given. We have

1 1
= < — <€
‘Jx2+1' S22+l x

provided x > R, where R = 1/e. This completes the
proof.

To be proved: limy_ 00 /X = 00. Proof: Let B > 0 be
given. We have \/x > B if x > R where R = B2. This
completes the proof.

To be proved: if lim f(x) = L and lim f(x) = M, then
xX—>a xX—a

L=M.

Proof: Suppose L # M. Let ¢ = |L — M|/3. Then

€ > 0. Since ligl f(x) = L, there exists §; > 0 such that

X—>a
| f(x)—L| <€ if |[x—a| < §1. Since liin f(x) = M, there
X—>a
exists 8, > 0 such that | f(x) — M| < € if |x —a| < §,.
Let § = min(81,82). If |x —al < &, then

3e=|L-M|=|(f(x)=M)+(L— fx)]
<|fx)—M|+|f(x)—L| <e+e=2e.

This implies that 3 < 2, a contradiction. Thus the original
assumption that L # M must be incorrect. Therefore
L=M.
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33.

34.

35.
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To be proved: if ligl g(x) = M, then there exists § > 0
xX—>a

such that if 0 < |x —a| < &, then |g(x)| < 1+ |M]|.
Proof: Taking € = 1 in the definition of limit, we obtain
a number 6 > 0 such that if 0 < |x —a| < 4, then
lg(x) — M| < 1. It follows from this latter inequality that

g = [(g(x)=M)+M| < [G(x)-M|+[M| < 1+|M].

To be proved: if lim f(x) = L and lim g(x) = M, then
xX—a xX—>a

lim f(x)g(x) =LM.

xX—>a

Proof: Let € > 0 be given. Since li_r)n f(x) = L, there
X a

exists §; > 0 such that | f(x) — L| < ¢/2(1 + |M]))

if 0 < |x —al| < §;. Since li_r)n g(x) = M, there ex-

X a

ists 8o > O such that |g(x) — M| < €¢/Q2(1 + |L])) if

0 < |x —a| < 8. By Exercise 32, there exists §3 > 0

such that |g(x)] < 1 + |[M]if 0 < |x —a| < §3. Let

8 = min(81, 82, 83). If |x —a| < §, then

|f()g(x) = LM = [f(x)g(x) — Lg(x) + Lg(x) — LM]|
=[(f(x) = L)g(x) + L(g(x) — M)]
= |(f(x) = L)g(x)] + [L(g(x) = M)]
=[f(x) = Lllg()[ + [L]lg(x) — M|

€ €
S R ) V) Y 4 —
sy MRS
<fL 6.
-2 2

Thus )}I_IBI f)gx)=LM.

To be proved: if )}1;12 g(x) = M where M # 0, then
there exists § > 0 such that if 0 < |x — a| < §, then
lg(x)[ > |M]/2.

Proof: By the definition of limit, there exists § > 0 such
that if 0 < |x —a| < 4, then |g(x) — M| < |[M|/2 (since
|M]/2 is a positive number). This latter inequality implies
that

|M|

IM| = |g(x)+(M—g(x))] = [g()|+|glx)—M] < [g(x)l+—

It follows that |g(x)| > |M| — (IM|/2) = |M]|/2, as
required.

To be proved: if li_r)n g(x) = M where M # 0, then
P a

. 1 1

lim — = .
sSugl) M
Proof: Let € > 0 be given. Since ligl gx) =M # 0,

X—>a

there exists §; > 0 such that |g(x) — M| < €|M|?/2 if
0 < |x —a| < §;. By Exercise 34, there exists §; > 0
such that |g(x)| > |[M]|/2if 0 < |x —a| < §3. Let
§ = min(81,82). If 0 < |x —al < &, then

1

__L‘: M —g(x)
glx)y M

<e|M|2 2
Mg (x) 2

M2

REVIEW EXERCISES 1 (PAGE 93)

This completes the proof.

36. To be proved: if lim f(x) = L and lim f(x) = M # 0,
x—>a xX—a
fo) L

then lim .
s>ag(x) M

Proof: By Exercises 33 and 35 we have

lim S = lim f(x) x ! L x %

x—a g(x) x—a

g(x)

L
u

37. To be proved: if f is continuous at L and lim g(x) = L,
X—>C

then lim f(g(x)) = f(L).

Proof: Let € > 0 be given. Since f is continuous at L,
there exists a number y > 0 such that if |y — L| < y, then
|f(y) — f(L)] < e. Since limyx_,. g(x) = L, there exists
8 > 0 such that if 0 < |[x —¢| < §, then |g(x) — L| < y.
Taking y = g(x), it follows that if 0 < |x — ¢| < §, then

|f(g(x)) = f(L)] <&, so that limy—.c f(g(x)) = f(L).

38. To be proved: if f(x) < g(x) < h(x) in an open interval
containing x = a (say, fora — §; < x < a + 81, where
81 > 0), and if limy—, f(x) = limy—, h(x) = L, then
also limy_, g(x) = L.
Proof: Let € > 0 be given. Since limy_, f(x) = L,
there exists §, > 0 such that if 0 < |x —a| < &3, then
| f(x) — L] < €/3. Since limy_4 h(x) = L, there exists
83 > 0 such that if 0 < |x—a| < 83, then |h(x)—L| < €/3.
Let § = min(81,62,83). If 0 < |x —a| < 4§, then

g(0) = L| = [g(x) = f(x) + f(x) — L|
<1g(x) — F(| + /() — L|
< h(x) = f@)] + [ f(0) — L]
= () =L+ L~ f)] +]f(x) - L|
< h(x) = LI+ f(x) = L] + | f(x) = L|
€ € €
<3t3t3=e

Thus limy_, g(x) = L.

Review Exercises 1 (page 93)

1. The average rate of change of x3 over [1,3] is

33-13 26
= =13.
3—-1 2

2. The average rate of change of 1/x over [-2,—1] is

/)= /=2) _-1/2 _ 1

—1-(=2) 1 2
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11.

12.

13.

14.

15.

16.

REVIEW EXERCISES 1 (PAGE 93)

The rate of change of x> at x = 2 is 17.
2+ h)d- . 8+ 127+ 6h%+h3 -8
lim = lim 18.
h—0 h h—0 h
= lim (12 + 6/ + h?) = 12.
h—0 19.
The rate of change of 1/x at x = —3/2 is 20
1 ( 1 ) 2 2
_ “\Z 5 2T 2 21.
lim =G/ +h 3/2) _ |im 2h=3 "3
h—0 h h—0 h
2(3+2h—3) 22.

l - @ -
hs0 3(2h —3)h

4 4
=lim ——— = —-—. 23.
h—0 3(2h — 3) 9
24.
lim(x2—4x+7)=1-4+7=4
x—1
25.
) 2 22 4
T —e T -2 "3
X2
lim does not exist. The denominator approaches 0 26.
x—>11—x2
(from both sides) while the numerator does not.
x2—4 (x—=2)(x+2) x+2
lim — im ———— =—4
*22 X2 —5x 1 6 x—>2(x—2)(x—3) T2y -3
lim x2—4 _ (x—=2)(x+2) x+2 27.
X2 dx 4 x2r (x—2)2 xs2x_2
does not exist. The denominator approaches 0 (from both
sides) while the numerator does not.
x2—4 . X +2
lim ——— = lim = —00
x—=>2—x2 —4x+4 x—2-x-2 28.
. x2—4 . x—=2
lim ——— = lim = —00
x—>—2+ x2 +4x + 4 x—>—2+Xx+2
L 2—=x . 4—x 1 29.
lim =lm ——— = ——
x—>4 x —4 x—>4 (2 + /x)(x —4) 4
o x2-9 (=3 3N +V3)
lim = lim
x=3 /x — J3  x—o3 x—3
= lim (x + 3)(v/x + V/3) = 12+/3
x—3
h 5 h(v/x + 3h + J/x)
h%O vx +3h \/— h—0 (x+3h)—x
i Vx+3h+ Jx 2Jx
= lim =
h—0 3 3
lim vx—x2=0
x—>0+ 30.
lirrh ~/x — x2 does not exist because v/ x — x2 is not de- 31
X—> .

fined for x < 0.

ADAMS and ESSEX: CALCULUS 9

lim v/ x — x2 does not exist because v/ x — x2 is not de-
x—)
fined for x > 1.
1ir111 Vx—=x2=0
x—>1—
i 1—x? i (1/x?) -1 1
im ———— = lim =—=
x>003x2 —x —1  x—>003—(1/x) —(1/x2) 3
2x + 100 (2/x) + (100/x2)
m —— = B ——
x—>—o00 x2 43 X—>—00 1+ (3/x2)
Cox3—1 o o x—=(1/x?
lim = lim ———>~ =—
x>m00 x2 4 4 x>—o0 | + (4/x2)
PR A . SN
an;o x2_—4 x—o0 | —(4/x2)
. 1
lim =00
x—>0+ X —X2
. 1 1
lim —— =~ =
x—>1/2 m \/1/_4

lim sinx does not exist; sinx takes the values —1 and 1
X—>00

in any interval (R, 0o), and limits, if they exist, must be
unique.

cos X .
lim = 0 by the squeeze theorem, since
X—>00 X
1 cosx 1
—— < < — forall x>0
x X

and limye0(—1/x) = limx—o0(1/x) = 0.

. 1 .
lim x sin — = 0 by the squeeze theorem, since
x—>0 X

1
—|x| < xsin— < |x| forall x #0
X

and limy—o(—|x|) = limx—o |x| = 0.

1
lim sin — does not exist; sin(1/x?) takes the values —1
x—>0 x

and 1 in any interval (—§,6), where § > 0, and limits, if
they exist, must be unique.

lim [x + vx2 —4x + 1]
X—>—00

x2—(x2—4x+1)

= lim

¥>=00 x — \/x2 —4x + 1

. 4x — 1

= lim

¥==00 x — |x|y/1 = (4/x) + (1/x2)
o x[4 = (1/x)]
= lim

X0 x4 x\/l 4/x) + (1/x2)
. —(1/x) _
= m =

¥ L4 1= (4/x) + (1/32)

Note how we have used |x| = —x (in the second last line),

because x — —o0.
lim [x + vx2—4x + 1] =
X—>00

f(x) = x> —4x2 + 1 is continuous on the whole real line
and so is discontinuous nowhere.

00 + 00 = 0
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X . . . .
fx) = 1 is continuous everywhere on its domain,
X
which consists of all real numbers except x = —1. It is

discontinuous nowhere.

5
fx) =1F %f X >2 4o defined everywhere and dis-

x ifx <
continuous at x = 2, where it is, however, left continuous

since limy—2— f(x) =2 = f(2).

if x > i is defined and continuous ev-

) = {"2

x ifx<
erywhere, and so discontinuous nowhere. Observe that
limx—1— f(x) =1 =limy14 f(X).

1 ifx>1
SO =HE=D =3, 2118 _
and discontinuous at x = 1 where it is, however, right
continuous.

is defined everywhere

. 1 if-3<x<3 .
= HO-x?) = =*= defined

S ) ( x7) {O ifx<-3o0rx>3 18 define
1

X
everywhere and discontinuous at x = =+3. It is right
continuous at —3 and left continuous at 3.

f(x) = |x|+|x + 1] is defined and continuous everywhere.

It is discontinuous nowhere.

_ [Ixl/lx + 1] if x # —1
A h. ifx=—1 oo
and discontinuous at x = —1 where it is neither left nor
right continuous since limy—_; f(x) = oo, while

f=1) =1.

is defined everywhere

Challenging Problems 1 (page 94)

Let 0 < a < b. The average rate of change of x3 over
la,b] is
b3 —a3

=b% +ab + a>.
b—a

The instantaneous rate of change of x3 at x = ¢ is

 (c+h)3=¢3 3¢2h + 3ch? + h3
lim = lim =

h—0 h h—0 h

If ¢ = /(a? + ab + b?)/3, then 3¢? = a? + ab + b?, so

the average rate of change over [a, b] is the instantaneous

rate of change at /(a2 + ab + b2)/3.
Claim: +/(a? +ab +b2)/3 > (a + b)/2.

Proof: Since a? —2ab + b? = (a — b)?> > 0, we have

3¢2.

4a? + 4ab + 4b% > 3a* + 6ab + 3b?
@ +ab+b> a®+2ab+b> _ (atbh)’
3 4 a 2

a? + ab + b? >a+b
3 2

6.

CHALLENGING PROBLEMS 1 (PAGE 94)

For x near 0 we have [x —1|=1—x and |x + 1| =x + 1.
Thus

1
lim s i al

—:1 _— = ——
O 1 —x+1] 0 (-x)—(x+1) 2

For x near 3 we have |[5—2x| =2x—5, |[x —=2| =x -2,
|x =5 =5—x, and |3x — 7| = 3x — 7. Thus

[5—2x|—|x—2] 2x —=5—(x—=2)
x—=3 |x — 5| —[3x — 7| _x—>35—x—(3x—7)
x—3 1

Let y = x/®. Then we have

x1/3 4 . y?>—4
Sl AT R S
-2 +2)

= l1im
=2 (y=2)(2+2y+4
y+2 4

1
= lim —— = =—.
y>2y24+2y+4 12 3

3 _ b3
Usea—b = ez to handle the denominator. We
a2 + ab + b2
have
Jim Y2 X =2
x=>1 3T+ x—2
34x—4 T+ 420+0)"3+4

= lim X
x>1./34+x+2 (7+x)-—38
(T+x)234+20+0)3+4  444+4

= lim =3.
242

x—1 3+ x42

—1—-J1+a
,r—(a) = p .

ry(a) =

-1+ 1+a
a

a) lim,—07—(a) does not exist. Observe that the right
limit is —oo and the left limit is oo.

b) From the following table it appears that
limg—o r4(a) = 1/2, the solution of the linear equa-
tion 2x — 1 = 0 which results from setting a = 0 in
the quadratic equation ax? + 2x — 1 = 0.

a r+(a)
1 0.41421
0.1 0.48810

—0.1 0.51317
0.01 0.49876

—0.01 0.50126
0.001 0.49988
—0.001 0.50013
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o Al 4+a—-1
lim ———
a—0 a
. (I+a)—1
im ————
a~>0a(/1+a+1)
1

c) lim ry(a)
a—0

= lim

1
a>0 JT+a+1 2

7. TRUE or FALSE

a) If limy—4 f(x) exists and limy—4 g(x) does not ex-
ist, then limy_4 (f(x) + g(x)) does not exist.

TRUE, because if limy—4 ( fx)+ g(x)) were to exist
then

lim g(0) = lim (£(x) + g(x) = /(x))
= lim (/) + g() = lim f(x)

would also exist.

b

=

If neither limy—,, f(x) nor limy_,, g(x) exists, then
limy—q (f(x) + g(x)) does not exist.

FALSE. Neither limy_ 1/x nor limy_o(—1/x) exist,
but limx_>0<(l /%) + (=1 /x)) = limy—0 0 = 0 exists.

c) If f is continuous at a, then so is | f].
TRUE. For any two real numbers u and v we have

[l = 1ol| = fu =l
This follows from

u| =|u—v+v| <|u—v|+|v], and
Wl =1lv—u+ul <lv—ul+uf =u—-v|+u

Now we have
)= f@] = 1f(x) = fla)

so the left side approaches zero whenever the right
side does. This happens when x — a by the continu-

ity of f at a.
d) If | f| is continuous at a, then so is f.
. -1 ifx<0O.
FALSE. The function f(x) = 1 x>0 is
discontinuous at x = 0, but | f(x)| = 1 everywhere,

and so is continuous at x = 0.

e) If f(x) < g(x) in an interval around @ and if
limy—, f(x) = L and limy_,4 g(x) = M both
exist, then L < M.

FALSE. Let g(x) = 1% 1FX#0 404 et

1 ifx=0
f(x) = —g(x). Then f(x) < g(x) for all x, but
limy—o f(x) = 0 = limy_¢ g(x). (Note: under the
given conditions, it is TRUE that L < M, but not
necessarily true that L < M.)

8.

10.

11.
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a) To be proved: if f is a continuous function defined
on a closed interval [a, b], then the range of f is a
closed interval.

Proof: By the Max-Min Theorem there exist numbers
u and v in [a, b] such that f(u) < f(x) < f(v) for
all x in [a, b]. By the Intermediate-Value Theorem,
f(x) takes on all values between f(u) and f(v) at
values of x between u and v, and hence at points of
[a,b]. Thus the range of f is [f(u), f(v)], a closed
interval.

b) If the domain of the continuous function f is an
open interval, the range of f can be any interval
(open, closed, half open, finite, or infinite).

=1 -1 if-l<x<l1
f(x)_|x2—1|_{l ifx<-lorx>1"

f is continuous wherever it is defined, that is at all points
except x = =+1. f has left and right limits —1 and 1,
respectively, at x = 1, and has left and right limits 1 and
—1, respectively, at x = —1. It is not, however, discontinu-
ous at any point, since —1 and 1 are not in its domain.

1 1 1
f(x) = = = .
x=xr g (Fox+a?) Lo(xo1)?
Observe that f(x) > f(1/2) = 4 for all x in (0, 1).

Suppose f is continuous on [0, 1] and f(0) = f(1).

a) To be proved: f(a) = f(a + ) for some a in [0, 3].
Proof: If f(1/2) = f(0) we can take a = 0 and be
done. If not, let

g(x) = f(x +3) = f(x).

Then g(0) # 0 and

g(1/2) = f() = f(1/2) = f(0) = f(1/2) = —¢(0).

Since g is continuous and has opposite signs at x = 0
and x = 1/2, the Intermediate-Value Theorem assures
us that there exists a between 0 and 1/2 such that
g(a) =0, that is, f(a) = f(a + %).

b) To be proved: if n > 2 is an integer, then
fla) = fla+ 1) for some a in [0,1—1].
Proof: Let g(x) = f(x + %) — f(x). Consider
the numbers x = 0, x = 1/n,x = 2/n, ...,
x = (m—1)/n. If g(x) = 0 for any of these num-
bers, then we can let a be that number. Otherwise,
g(x) # 0 at any of these numbers. Suppose that the
values of g at all these numbers has the same sign
(say positive). Then we have

f)> f() > > f(2) > 3 > f(0),

which is a contradiction, since f(0) = f(1). There-
fore there exists j in the set {0,1,2,...,n — 1} such
that g(j/n) and g((j + 1)/n) have opposite sign. By
the Intermediate-Value Theorem, g(a) = 0 for some a
between j/n and (j + 1)/n, which we had to prove.
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