
Chapter 1

Introduction

1.1 Mathematical Models and Solutions

1.(a) Let u(t) be the temperature of the coffee at time t (measured in minutes), and T0 = 70
be the ambient temperature. The initial value problem is u′ = −k(u− T0), u(0) = 200.

(b) According to the text, the solution of the differential equation is u(t) = T0 + ce−kt.
200 = u(0) = T0 + c, thus c = 130. Also, 190 = u(1) = 70 + 130e−k, thus e−k = 12/13.
The coffee reaches temperature 170 when 170 = 70 + 130e−kt = 70 + 130(12/13)t, thus
t = ln(10/13)/ ln(12/13) ≈ 3.28 minutes.

2. Let us measure time in hours. When the ambient temperature is 120◦F, the solution of the
differential equation is u = 120− 80e−kt. We know that 90 = u(3/4) = 120− 80e−3k/4, thus
e−k = (3/8)4/3. When the ambient temperature is 100◦F, the solution is u = 100 − 60e−kt.
Then 90 = 100− 60e−kt, i.e. e−kt = 1/6 when t = ln(1/6)/ ln(3/8)4/3 ≈ 1.37 hours.

3. Let t = 0 be 11:09pm, and let us measure time in hours. The temperature of the body
is then given by u(t) = 68 + 12e−kt. Also, 78.5 = u(1) = 68 + 12e−k. This gives that
e−k = 7/8. The time of death is given by the equation 98.6 = 68 + 12e−kt; we obtain that
t = ln(51/20)/ ln(7/8) ≈ −7.01 hours, i.e. at around 4:08pm.

4.(a) The solution of the differential equation p′ = rp, when p(0) = p0 is p(t) = p0e
rt. If the

population doubles in 30 days, then p(30) = p0e
30r = 2p0, so r = ln 2/30 (day−1).

(b) The same computation shows that r = ln 2/N (day−1).

5.(a) The general solution is p(t) = 900 + cet/2. Plugging in for the initial condition, we have
p(t) = 900 + (p0 − 900)et/2. With p0 = 850, the solution is p(t) = 900 − 50et/2. To find
the time when the population becomes extinct, we need to find the time T when p(T ) = 0.
Therefore, 900 = 50eT/2, which implies eT/2 = 18, and, therefore, T = 2 ln 18 ≈ 5.78 months.

(b) Using the general solution, p(t) = 900 + (p0 − 900)et/2, we see that the population will
become extinct at the time T when 900 = (900− p0)eT/2. That is, T = 2 ln[900/(900− p0)]
months.

(c) Using the general solution, p(t) = 900 + (p0− 900)et/2, we see that the population after 1
year (12 months) will be p(6) = 900+(p0−900)e6. If we want to know the initial population
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which will lead to extinction after 1 year, we set p(6) = 0 and solve for p0. Doing so, we
have (900− p0)e6 = 900 which implies p0 = 900(1− e−6) ≈ 897.8.

6.(a) The equation is a′ = −ra, a(0) = a0. The solution is a(t) = a0e
−rt.

(b) We have to solve the equation a0/2 = a(T1/2) = a0e
−rT1/2 ; we obtain T1/2 = ln 2/r.

7.(a) The general solution of the equation is Q(t) = ce−rt. Given that Q(0) = 100, we have
c = 100. Assuming that Q(1) = 82.04, we have 82.04 = 100e−r. Solving this equation for r,
we have r = − ln(82.04/100) = 0.19796 per week or r = 0.02828 per day.

(b) Using the form of the general solution and r found above, we have Q(t) = 100e−0.02828t.

(c) Let T be the time it takes the isotope to decay to half of its original amount. From part
(b), we conclude that 0.5 = e−0.2828T which implies that T = − ln(0.5)/0.2828 ≈ 24.5 days.

8.(a) First, mv′ = m(v0 +mg/γ)(−γ/m)e−γt/m = −γ(v0 +mg/γ)e−γt/m. Also, −mg− γv =
−mg − γ((v0 + mgγ)e−γt/m −mg/γ) = −γ(v0 + mg/γ)e−γt/m. So the function satisfies the
given differential equation. We can also see that v(0) = (v0 +mg/γ)−mg/γ = v0.

(b)

(c) The ball reaches its maximum height when v = 0. This happens when (v0+mg/γ)e−γt/m =
mg/γ. Dividing both sides by e−γt/mmg/γ, we obtain v0γ/(mg) + 1 = eγt/m. Taking the
logarithm of both sides and dividing by γ/m we get that t = tmax = (m/γ) ln(1+γv0/(mg)).

(d) Using the previous parts, γ = −mg/vterm = −0.145(9.8)/(−33)(kg/sec) ≈ 0.0431(kg/sec).

(e) Using the expression for the velocity, we can get the function describing the height of the
thrown ball. Because v = h′, we get that h(t) = (−m/γ)(v0 +mg/γ)e−γt/m −mgt/γ + h0 +
(m/γ)(v0 +mg/γ), where the constant was chosen to satisfy the initial condition h(0) = h0.
Using part (c), the time needed to reach maximum height is (m/γ) ln(1 + γv0/(mg)), by
plugging this into the height function we obtain that hmax ≈ 31.16 (m).

9.(a) Following the discussion in the text, the equation is given by mv′ = mg − kv2.

(b) After a long time, v′ → 0. Therefore, mg − kv2 → 0, or v →
√
mg/k.

(c) We need to solve the equation
√

0.025(9.8)/k = 35. Solving this equation, we see that
k = 0.0002 kg/m.

10. Using the model from the text, we obtain the equation Q′(t) = 4 − 5(Q(t)/V (t)),
Q(0) = 0. The amount of brine is given by the equation V ′(t) = −1, V (0) = 200.



1.1. MATHEMATICAL MODELS AND SOLUTIONS 3

11. Using the model from the text, we obtain the equation Q′ = (1 + (sin t)/2)/2− 2Q/100,
Q(0) = 50.

12.(a) Using the model from the text, we get the equation Q′(t) = 300(0.01)−300Q/1000000,
Q(0) = Q0, where Q0 is the unknown original amount of chemical in the pond.

(b) The limiting amount can be found by setting the right hand side of the differential
equation to zero. We obtain Q = 10000g = 10kg. The limiting amount does not depend on
Q0.

13.(a) We obtain that C(t) = C0e
−kt; this function satisfies dC/dt = −kC and C(0) = C0.

(b) C2 = C0 + C(T ) = C0 + C0e
−kT = C0(1 + e−kT )

(c) Using induction, Cn = C0 + Cn−1e
−kT = C0(1 + e−kT + e−2kT + . . . + e−(n−1)kT ) =

C0(1− e−nkT )/(1− e−kT ). Thus limn→∞Cn = C0/(1− e−kT ).

14.(a) Let q(t) be the total amount of the drug (in milligrams) in the body at a given time t
(measured in hours). The drug enters the body at the rate of 5 mg/cm3 ·100 cm3/hr = 500
mg/hr, and the drug leaves the body at the rate of 0.4q mg/hr. Therefore, the governing
differential equation is given by dq/dt = 500− 0.4q.

(b) If q > 1250, then q′ < 0. If q < 1250, then q′ > 0. Therefore, q → 1250.

15. We compute: P ′(t) = (P0 + k/r)ertr = r[(P0 + k/r)ert − (k/r)] + k = rP + k, and
P (0) = P0 + k/r − k/r = P0.

16. Using the model from problem 15, k = 0, P0 = 1050 and r = 0.04. Then P (394) ≈
7.34 · 109. If r = 0.06, we obtain P (394) = 1.94 · 1013.

17. Using the model from problem 15, k = −200(12), P0 = 20, 000 and r = 0.05. Then
solving the equation P (t) = (P0 + k/r)ert − k/r = 0 we obtain t ≈ 10.78 years; the total
amount paid is (10.78)(12)(200) = $25, 872.

18. The discrete approximation is P (t+ ∆t) ≈ P (t) + (r∆t)P (t) + k∆t; following the hint,
we can write P (t+ ∆t) = P (t) + P ′(t)∆t+ (1/2)P ′′(t̃)(∆t)2 according to Taylor’s theorem.
Substituting this into the discrete approximation and subtracting P (t) from both sides we
obtain P ′(t)∆t + (1/2)P ′′(t̃)(∆t)2 ≈ (r∆t)P (t) + k∆t; then after dividing by ∆t we get
P ′(t) + (1/2)P ′′(t̃)∆t ≈ rP (t) + k. If we let ∆t→ 0, we obtain the differential equation.

19. The surface area of a spherical raindrop of radius r is given by S = 4πr2. The volume
of a spherical raindrop is given by V = 4πr3/3. Therefore, we see that the surface area
S = cV 2/3 for some constant c. If the raindrop evaporates at a rate proportional to its
surface area, then dV/dt = −kV 2/3 for some k > 0.

20. The equation of motion is given by ma = mdv/dt = mg − kv − gρ04r3π/3, where ρ0 is
density of the seawater, r is the radius of the buoy, and k is the proportionality constant of
the drag force. Also, v(0) = 10 m/s. The buoy will sink when mg ≥ gρ04r3π/3, i.e. when
m ≥ ρ04r3π/3 ≈ 536.69 kg. The terminal sink velocity for m values bigger than this are
given by the equation 0 = mg − kv − gρ04r3π/3, i.e. v = (mg − gρ04r3π/3)/k.
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1.2 Qualitative Methods: Phase Lines and Direction

Fields

1. y = 0, y = 2 unstable, y = 1 asymptotically stable.

0

1

2

2. y = 0 unstable.

0

3. y = 0 asymptotically stable.

0



1.2. QUALITATIVE METHODS: PHASE LINES AND DIRECTION FIELDS 5

4. y = 0 asymptotically stable.

0

5. y = −1 asymptotically stable, y = 0 semistable, y = 3 unstable.

0

-1

3

6. y = 0 unstable.

0



6 CHAPTER 1. INTRODUCTION

7. y = 0 unstable, y = −a/b asymptotically stable.

0

-a/b

8. y = 1 semistable.

0

9. y = −1 asymptotically stable, y = 0 semistable, y = 1 unstable.

0

1

-1
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10. y = −1 asymptotically stable, y = 0 unstable, y = 1 asymptotically stable.

0

1

-1

11. y = 0 asymptotically stable, y = (b/a)2 unstable.

0

(b/a)
2

12. y = −2 unstable, y = 0 semistable, y = 2 asymptotically stable.

0

2

-2
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13. y = 0 semistable, y = 1 semistable.

0

1

14.

For y > 3/2, the slopes are negative, thus the solutions decrease. For y < 3/2, the slopes are
positive, thus the solutions increase. As a result, y → 3/2 as t→∞ for all initial conditions
y0.

15.

For y > 3/2, the slopes are positive, therefore the solutions increase. For y < 3/2, the slopes
are negative, therefore the solutions decrease. As a result, y diverges from 3/2 as t →∞ if
y(0) 6= 3/2.
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16.

For y > −3/2, the slopes are positive, thus the solutions increase. For y < −3/2, the slopes
are negative, thus the solutions decrease. As a result, y diverges from the equilibrium −3/2
as t→∞ if y(0) 6= −3/2.

17.

For y > −1/2, the slopes are negative, therefore the solutions decrease. For y < −1/2, the
slopes are positive, therefore the solutions increase. As a result, y → −1/2 as t→∞ for all
initial conditions y0.

18.

For y > −1/2, the slopes are positive, thus the solutions increase. For y < −1/2, the slopes
are negative, thus the solutions decrease. As a result, y diverges from the equilibrium −1/2
as t→∞ if y(0) 6= −1/2.
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19.

For y > −2, the slopes are positive, therefore the solutions increase. For y < −2, the slopes
are negative, therefore the solutions decrease. As a result, y diverges from −2 as t → ∞ if
y(0) 6= −2.

20.

y = 0 and y = 4 are equilibrium solutions; y → 4 if initial value is positive; y diverges from
0 if initial value is negative.

21.

y = 0 and y = 5 are equilibrium solutions; y diverges from 5 if the initial value is greater
than 5; y → 0 if the initial value is less than 5.
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22.

y = 0 is equilibrium solution; y → 0 if initial value is negative; y diverges from 0 if initial
value is positive.

23.

y = 0 and y = 2 are equilibrium solutions; y diverges from 0 if the initial value is negative;
y → 2 if the initial value is between 0 and 2; y diverges from 2 if the initial value is greater
than 2.

24. (j) - only equilibrium is y = 2; y′ > 0 when y < 2.

25. (c) - only equilibrium is y = 2; y′ < 0 when y < 2.

26. (g) - only equilibrium is y = −2; y′ > 0 when y < −2.

27. (b) - only equilibrium is y = −2; y′ < 0 when y < −2.

28. (h) - equilibria at y = 0, y = 3; y′ > 0 when 0 < y < 3.

29. (e) - equilibria at y = 0, y = 3; y′ < 0 when 0 < y < 3.

30. With

φ(t) = T0 +
kA

k2 + ω2
(k sinωt− ω cosωt) + ce−kt,

differentiation gives that

φ′(t) =
kA

k2 + ω2
(kω cosωt+ ω2 sinωt)− kce−kt,
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thus

φ′(t) + kφ(t) = kT0 + kA sinωt.

31. Using the fact that

R sin(ωt− δ) = R cos δ sinωt−R sin δ cosωt,

where R2 cos2 δ +R2 sin2 δ = R2 = A2 +B2, the desired result follows.

32. y = 0 unstable, y = K asymptotically stable. The figure shows the case r = 2, K = 4.

33.(a) y = 0 unstable, y = K asymptotically stable. The figure shows the case r = 2, K = 4.

(b) We have to show that for 0 < y ≤ K, ry(1 − y/K) ≤ ry ln(K/y). This is the same
as 1 − y/K ≤ ln(K/y); thus we have to show that e1−y/K ≤ K/y, which is equivalent to
ey/K−1 ≥ y/K. The function ex is concave up, thus the tangent line at x = 0 is below the
function, i.e. ex ≥ 1 +x for every x value. Plugging in x = y/K−1 we obtain the inequality
we need.

34. y = 0 unstable, y = (a/b)3 asymptotically stable. The figure shows the case a = 2,
b = 4.
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35.(a) We compute:

dC

dτ
=
dC

dt

dt

dτ
=

1

ci

dc

dt

dt

dτ
=

1

ci
(
ri
V
ci − ri

c

V
− kc)V

ri
= 1− c

ci
− kV

ri

c

ci
= 1− C − αC.

(b) The equilibrium is at C = 1/(1 + α); it is asymptotically stable.

0

1/(1+α)

36.(a) The volume of the cone is V = πa2h/3, thus 3aV/πh = a3, and then a2 = (3a/πh)2/3V 2/3.
If the rate of evaporation is proportional to the surface area, then rate out = απa2 =
απ(3a/πh)2/3V 2/3. We obtain

dV

dt
= rate in− rate out = k − απ

(
3a

πh

)2/3

V 2/3.

(b) The equilibrium volume can be found by setting dV/dt = 0. We see that the equilibrium
volume is

V =

(
k

απ

)3/2(
πh

3a

)
.

To find the equilibrium height, we use the fact that the height and radius of the conical
pond maintain a constant ratio. Therefore, if he, ae represent the equilibrium values for the
h and a, we must have he/ae = h/a. Further, we notice that the equilibrium volume can be
written as

V = πa2
e

he
3

=

(
k

απ

)3/2(
πhe
3ae

)
,
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thus ae = (kαπ)1/2, and then he = (k/απ)1/2(h/a). Since f ′(V ) = −2
3
απ(3a/πh)2/3V −1/3 <

0, the equilibrium is asymptotically stable.

(c) In order to guarantee that the pond does not overflow, we need the rate of water in to
be less than or equal to the rate of water out. Therefore, we need k − απa2 ≤ 0.

37.(a)

0

k*

(b) We compute, using the product rule:

dY

dt
=
dA

dt
Lf(k) + A

dL

dt
f(k) + ALf ′(k)

dk

dt
= gALf(k) + nALf(k) = (n+ g)Y,

because dk/dt = 0 at k = k∗.

1.3 Definitions, Classification, and Terminology

1. The differential equation is second order, since the highest derivative in the equation is
of order two. The equation is linear since the left hand side is a linear function of y and its
derivatives and the right hand side is just a function of t.

2. The differential equation is second order since the highest derivative in the equation is of
order two. The equation is nonlinear because of the term y2d2y/dt2.

3. The differential equation is fourth order since the highest derivative in the equation is of
order four. The equation is linear since the left hand side is a linear function of y and its
derivatives and the right hand side does not depend on y.

4. The differential equation is first order since the only derivative in the equation is of order
one. The equation is nonlinear because of the y2 term.

5. The differential equation is second order since the highest derivative in the equation is
of order two. The equation is nonlinear because of the term sin(t+ y) which is not a linear
function of y.

6. The differential equation is third order since the highest derivative in the equation is of
order three. The equation is linear because the left hand side is a linear function of y and
its derivatives, and the right hand side is only a function of t.

7. a0 = 1, a1 = 1/(1 + t), g = 2 sin t; nonhomogeneous.
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8. a0 = 1, a1 = 0, a2 = −t, g = 0; homogeneous.

9. a0 = x2, a1 = −3x, a2 = 4, g = lnx; nonhomogeneous.

10. a0 = 1− x2, a1 = −2x, a2 = n(n+ 1), g = 0; homogeneous.

11. a0 = 1, a1 = 0, a2 = cos t, a3 = 0, a4 = 1, g = e−t sin t; nonhomogenous.

12. a0 = p(x), a1 = p′(x), a2 = −q(x) + λr(x), g = 0; homogeneous.

13. If y1 = et, then y′1 = et and y′′1 = et. Therefore, y′′1 − y1 = 0. Also, y2 = cosh t implies
y′2 = sinh t and y′2 = cosh t. Therefore, y′′2 − y2 = 0.

14. If y1 = e−3t, then y′1 = −3e−3t and y′′1 = 9e−3t. Therefore, y′′1+2y′1−3y1 = (9−6−3)y1 = 0.
Also, y2 = et implies y′2 = y′′2 = et. Therefore, y′′1 + 2y′1 − 3y1 = (1 + 2− 3)et = 0.

15. If y = 3t+ t2, then y′ = 3 + 2t. Therefore, ty′ − y = t(3 + 2t)− (3t+ t2) = t2.

16. If y1 = t/3, then y′1 = 1/3 and y′′1 = y′′′1 = y′′′′1 = 0. Therefore, y′′′′1 + 4y′′′1 + 3y = t. Also,
y2 = e−t + t/3 implies y′2 = −e−t + 1/3, y′′2 = e−t, y′′′2 = −e−t, and y′′′′2 = e−t. Therefore,
y′′′′2 + 4y′′′2 + 3y = e−t − 4e−t + 3(e−t + t/3) = t.

17. If y1 = t1/2, then y′1 = t−1/2/2 and y′′1 = −t−3/2/4. Therefore, 2t2y′′1 + 3ty′1 − y1 =
2t2(−t−3/2/4)+3t(t−1/2/2)−t1/2 = (−1/2+3/2−1)t1/2 = 0. Also, y2 = t−1 implies y′2 = −t−2

and y′′2 = 2t−3. Therefore, 2t2y′′2 +3ty′2−y2 = 2t2(2t−3)+3t(−t−2)− t−1 = (4−3−1)t−1 = 0.

18. If y1 = t−2, then y′1 = −2t−3 and y′′1 = 6t−4. Therefore, t2y′′1 + 5ty′1 + 4y1 = t2(6t−4) +
5t(−2t−3) + 4t−2 = (6 − 10 + 4)t−2 = 0. Also, y2 = t−2 ln t implies y′2 = t−3 − 2t−3 ln t
and y′′2 = −5t−4 + 6t−4 ln t. Therefore, t2y′′2 + 5ty′2 + 4y2 = t2(−5t−4 + 6t−4 ln t) + 5t(t−3 −
2t−3 ln t) + 4(t−2 ln t) = (−5 + 5)t−2 + (6− 10 + 4)t−2 ln t = 0.

19. If y = (cos t) ln cos t+t sin t, then y′ = −(sin t) ln cos t+t cos t and y′′ = −(cos t) ln cos t−
t sin t+sec t. Therefore, y′′+y = −(cos t) ln cos t−t sin t+sec t+(cos t) ln cos t+t sin t = sec t.

20. If y = et
2 ∫ t

0
e−s

2
ds + et

2
, then y′ = 2tet

2 ∫ t
0
e−s

2
ds + 1 + 2tet

2
. Therefore, y′ − 2ty =

2tet
2 ∫ t

0
e−s

2
ds+ 1 + 2tet

2 − 2t(et
2 ∫ t

0
e−s

2
ds+ et

2
) = 1.

21. Let y = ert. Then y′ = rert. Substituting these terms into the differential equation, we
have y′ + 2y = rert + 2ert = (r + 2)ert = 0. This equation implies r = −2.

22. Let y = ert. Then y′ = rert and y′′ = r2ert. Substituting these terms into the differential
equation, we have y′′ − y = (r2 − 1)ert = 0. This equation implies r = ±1.

23. Let y = ert. Then y′ = rert and y′′ = r2ert. Substituting these terms into the differential
equation, we have y′′ + y′ − 6y = (r2 + r − 6)ert = 0. In order for r to satisfy this equation,
we need r2 + r − 6 = 0. That is, we need r = 2, −3.

24. Let y = ert. Then y′ = rert, y′′ = r2ert and y′′′ = r3ert. Substituting these terms into
the differential equation, we have y′′′ − 3y′′ + 2y′ = (r3 − 3r2 + 2r)ert = 0. In order for r to
satisfy this equation, we need r3 − 3r2 + 2r = 0. That is, we need r = 0, 1, 2.

25. Let y = tr. Then y′ = rtr−1 and y′′ = r(r − 1)tr−2. Substituting these terms into
the differential equation, we have t2y′′ + 4ty′ + 2y = t2(r(r − 1)tr−2) + 4t(rtr−1) + 2tr =
(r(r−1)+4r+2)tr = 0. In order for r to satisfy this equation, we need r(r−1)+4r+2 = 0.
Simplifying this expression, we need r2 + 3r + 2 = 0. The solutions of this equation are
r = −1, −2.
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26. Let y = tr. Then y′ = rtr−1 and y′′ = r(r − 1)tr−2. Substituting these terms into
the differential equation, we have t2y′′ − 4ty′ + 4y = t2(r(r − 1)tr−2) − 4t(rtr−1) + 4tr =
(r(r−1)−4r+4)tr = 0. In order for r to satisfy this equation, we need r(r−1)−4r+4 = 0.
Simplifying this expression, we need r2 − 5r + 4 = 0. The solutions of this equation are
r = 1, 4.

27. If y = Ce−2t, then y′ = −2Ce−2t. Thus y′ + 2y = 0. Also, 1 = y(0) = Ce0 = C.

28. If y = Cecos t, then y′ = (− sin t)Cecos t. Thus y′ + (sin t)y = 0. Also, 1 = y(π) =
Cecosπ = Ce−1 and then C = e.

29. If y = sin t/t2 +C/t2, then y′ = cos t/t2− 2 sin t/t3− 2C/t3. Thus y′+ (2/t)y = cos t/t2.
Also, 1/2 = y(1) = sin 1 + C and then C = 1/2− sin 1.

30. If y = 1 − 1/t + Ce−t/t, then y′ = 1/t2 − Ce−t/t − Ce−t/t2. Thus ty′ + (t + 1)y = t.
Also, 1 = y(ln 2) = 1− 1/ ln 2 + Ce− ln 2/ ln 2 and then C = 2.

31. If y = e−t
2/4
∫ t

0
es

2/4 ds + Ce−t
2/4, then y′ = −(t/2)e−t

2/4
∫ t

0
es

2/4 ds + e−t
2/4et

2/4 −
(t/2)Ce−t

2/4. Thus 2y′ + ty = 2. Also, 1 = y(0) = Ce0 = C.

32. If φ(t) = c1e
−t + c2e

−2t, then φ′(t) = −c1e
−t− 2c2e

−2t and φ′′(t) = c1e
−t + 4c2e

−2t. Thus
φ′′ + 3φ′ + 2φ = 0.

(a) −1 = y(0) = c1 + c2 and 4 = y′(0) = −c1 − 2c2, thus c1 = 2 and c2 = −3.

(b) 2 = y(0) = c1 + c2 and 0 = y′(0) = −c1 − 2c2, thus c1 = 4 and c2 = −2.

33. If φ(t) = c1e
t + c2te

t, then φ′(t) = c1e
t + c2e

t + c2te
t and φ′′(t) = c1e

t + 2c2e
t + c2te

t.
Thus φ′′ − 2φ′ + φ = 0.

(a) 3 = y(0) = c1 and 1 = y′(0) = c1 + c2, thus c2 = −2.

(b) 1 = y(0) = c1 and −4 = y′(0) = c1 + c2, thus c2 = −5.

34. If φ(t) = c1e
−t cos 2t+c2e

−t sin 2t, then φ′(t) = −c1e
−t cos 2t−2c1e

−t sin 2t−c2e
−t sin 2t+

2c2e
−t cos 2t and φ′′(t) = c1e

−t cos 2t+2c1e
−t sin 2t+2c1e

−t sin 2t−4c1e
−t cos 2t+c2e

−t sin 2t−
2c2e

−t cos 2t− 2c2e
−t cos 2t− 4c2e

−t sin 2t. Thus φ′′ + 2φ′ + 5φ = 0.

(a) 1 = y(0) = c1 and 1 = y′(0) = −c1 + 2c2, thus c2 = 1.

(b) 2 = y(0) = c1 and 5 = y′(0) = −c1 + 2c2, thus c2 = 7/2.


