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Introduction 
 

ANSWERS TO REVIEW QUESTIONS  

1. Guided missiles, automatic gain control in radio receivers, satellite tracking antenna 

2. Yes - power gain, remote control, parameter conversion; No - Expense, complexity 

3. Motor, low pass filter, inertia supported between two bearings 

4. Closed-loop systems compensate for disturbances by measuring the response, comparing it to 

the input response (the desired output), and then correcting the output response. 

5. Under the condition that the feedback element is other than unity 

6. Actuating signal 

7. Multiple subsystems can time share the controller. Any adjustments to the controller can be 

implemented with simply software changes. 

8. Stability, transient response, and steady-state error 

9. Steady-state, transient 

10. It follows a growing transient response until the steady-state response is no longer visible. The 

system will either destroy itself, reach an equilibrium state because of saturation in driving 

amplifiers, or hit limit stops. 

11. Natural response 

12. Determine the transient response performance of the system. 

13. Determine system parameters to meet the transient response specifications for the system. 

14. True 

15. Transfer function, state-space, differential equations 

16. Transfer function - the Laplace transform of the differential equation 

State-space - representation of an nth order differential equation as n simultaneous first-order 

differential equations 

Differential equation - Modeling a system with its differential equation 

 

SOLUTIONS TO PROBLEMS  
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1. Five turns yields 50 v. Therefore K = 
50 volts

5 x 2  rad
= 1.59 

2. 

  

 

 3. 

 

 

4. 

 

 

 

 



Solutions to Problems   1-3 

 

 

 

5. 

 

 

6. 

 

7.

 

8.
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9.

 
 

If the narrow light beam is modulated sinusoidally the pupil’s diameter will also 

vary sinusoidally (with a delay see part c) in problem) 

 

c. If the pupil responded with no time delay the pupil would contract only to the point 

where a small amount of light goes in. Then the pupil would stop contracting and 

would remain with a fixed diameter. 

  



Solutions to Problems   1-5 

 

10. 

 

 
 

 

11. 
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12. 

 
 

13. 

 
 

 

 

14.  

 
 

 

 

 

 

  



Solutions to Problems   1-7 

 

15. 
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16. 

 

 
 

17. 

 
  



Solutions to Problems   1-9 

 

 

18.  

a. L
di

dt
+ Ri = u(t) 

 

b. Assume a steady-state solution iss = B. Substituting this into the differential equation yields RB = 

1,  

from which B = 
1

R
. The characteristic equation is LM + R = 0, from which M = -

R

L
. Thus, the total 

solution is i(t)  = Ae-(R/L)t +
1

R
. Solving for the arbitrary constants, i(0) = A + 

1

R
 =  0. Thus, A  =  

- 
1

R
. The final solution is i(t) = 

1

R
 -- 

1

R
e-(R/L)t = 

 ( / )1
(1 )R L te

R
. 

 

 c. 

 

19. 

a. Writing the loop equation, 
1

(0) ( )
c

di
Ri L idt v v t

dt C
     

b. Differentiating and substituting values, 

2

2
2 16 0

d i di
i

dt dt
    

Writing the characteristic equation and factoring, 

  2 2 16 ( 1 15 )( 1 15 )M M M i M i        

The general form of the solution and its derivative is 

cos( 15 ) sin( 15 )t ti Ae t Be t    

 ( 15 ) cos( 15 ) ( 15 ) sin( 15 )t tdi
A B e t A B e t

dt

       
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 Using i(0) = 0; 
(0) 1

(0) 2L
vdi

dt L L
    

 

i(0) = A = 0 and 
2

(0) 15 2
15

di
A B B

dt
       

 

The solution is:  
2

( ) 15 sin( 15 )
15

ti t e t  

 

c.  

 

 

 

20.  
a. Assume a particular solution of  

px ( ) cos(2 ) sin(2 )t C t D t   

Substitute into the differential equation and obtain 

(7 2 )cos(2 ) ( 2 7 )sin(2 ) 5cos(2 )C D t C D t t      

Equating like coefficients,  

7 2 5C D    

2 7 0C D    



Solutions to Problems   1-11 

 

From which, C =  
35

53
   and D =

10

53
. 

The characteristic polynomial is  

7 0M    

Thus, the total solution is  

                              
7 35 10

( ) cos[2 ] sin[2 ]
53 53

tx t Ae t t  
   

 
 

Solving for the arbitrary constants, x(0) = A +
35

53
  = 0. Therefore, A = - 

35

53
  . The final solution is 

735 35 10
( ) cos[2 ] sin[2 ]

53 53 53

tx t e t t   
      
   

 

b. Assume a particular solution of  

xp = Asin3t + Bcos3t 

Substitute into the differential equation and obtain 

(18A B)cos(3t) (A 18B)sin(3t) 5sin(3t)     

Therefore, 18A – B = 0 and –(A + 18B) = 5. Solving for A and B we obtain 

xp = (-1/65)sin3t + (-18/65)cos3t 

The characteristic polynomial is  

2M 6M 8 (M 4)(M 2)      

Thus, the total solution is  

4t 2t 18 1
x Ce De cos(3 t) sin(3 t)

65 65

   
     

 
 

Solving for the arbitrary constants, 
18

(0) 0
65

x C D    .  

Also,  the derivative of the solution is 

 

-4t -2tdx 3 54
=- cos(3 t)+ sin(3 t)-4Ce -2D e

dt 65 65
 

 

Solving for the arbitrary constants, 
3

x(0) 4 2 0
65

C D    , or  C = 
3

10


 

and D = 
15

26
. 

The final solution is 

-4t -2t18 1 3 15
x=- cos(3 t)- sin(3 t)- e + e

65 65 10 26
 

c. Assume a particular solution of  
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xp = A 

Substitute into the differential equation and obtain 25A = 10, or A = 2/5. 

The characteristic polynomial is  

2M 8M 25 (M 4 3 i) (M 4 3 i)        

Thus, the total solution is  

-4t2
x e (B sin(3 t) C cos(3 t))

5
    

Solving for the arbitrary constants, x(0) = C + 2/5 = 0. Therefore, C = -2/5. Also, the derivative of the 

solution is 

-4tdx
((3 B 4 C) cos(3 t) (4 B 3 C) sin(3 t)) e

dt
     

Solving for the arbitrary constants, x(0) = 3B – 4C = 0. Therefore, B = -8/15. The final solution is 

 

42 8 2
( ) sin(3 ) cos(3 )

5 15 5

tx t e t t  
   

 
 

21.  

a. Assume a particular solution of  

( ) cos(2 ) sin(2 )
p

x t C t D t   

Substitute into the differential equation and obtain 

1
2( 2 )cos(2 ) 4 sin(2 ) sin(2 )

2
C D t C D t t

 
     

 
 

Equating like coefficients,  

2( 2 ) 0C D     

1
4 1

2
C D
 

   
 

 

From which, C = - 
1

5
  and D = -

1

10
. 

The characteristic polynomial is  

2 2 2 ( 1 ) ( 1 )M M M i M i        

Thus, the total solution is  

1 1
cos(2 ) sin(2 ) ( cos[ ] sin[ ])

5 10

tx t t e A t B t      

Solving for the arbitrary constants, x(0) = A - 
1

5
  = 2. Therefore, A =

11

5
  . Also, the derivative of the 

solution is 



Solutions to Problems   1-13 

 

dx 1 2
cos(2 ) sin(2 ) ( ) cos( ) ( ) sin( )

dt 5 5

t tt t A B e t A B e t          

Solving for the arbitrary constants, x(0) = - A  + B - 0.2 = -3. Therefore, B = 
3

5
 . The final solution 

is 

 

1 1 11 3
( ) cos(2 ) sin(2 ) cos( ) sin( )

5 10 5 5

tx t t t e t t  
     

 
 

b. Assume a particular solution of  

xp = Ce-2t + Dt + E 

Substitute into the differential equation and obtain 

2 22 5t tCe Dt D E e t       

Equating like coefficients, C = 5, D = 1, and 2D + E = 0. 

From which, C = 5, D = 1, and E = - 2. 

The characteristic polynomial is  

2 22 1 ( 1)M M M     

Thus, the total solution is  

 
2( ) 5 2t t tx t A e Be t e t        

Solving for the arbitrary constants, x(0) = A + 5 - 2 = 2 Therefore, A = -1. Also,  the derivative of the 

solution is 

2( ) 10 1t t tdx
A B e Bte e

dt

         

Solving for the arbitrary constants, 
.

x(0)  = B - 8 = 1. Therefore, B = 9. The final solution is 

2( ) 9 5 2t t tx t e t e e t         

c. Assume a particular solution of  

xp = Ct2 + Dt + E 

Substitute into the differential equation and obtain 

2 24 4 2 4Ct Dt C E t     

Equating like coefficients, C = 
1

4
 , D = 0, and 2C + 4E = 0. 

From which, C = 
1

4
 , D = 0, and E = - 

1

8
. 
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The characteristic polynomial is  

2 4 ( 2 )( 2 )M M i M i     

Thus, the total solution is  

21 1
( ) cos(2 ) sin(2 )

4 8
x t A t B t t     

Solving for the arbitrary constants, x(0) = A - 
1

8
  = 1 Therefore, A = 

9

8
 . Also,  the derivative of the 

solution is 

dx 1
2 cos(2 ) 2 sin(2 )

dt 2
B t A t t    

Solving for the arbitrary constants, 
.

x(0)  = 2B = 2. Therefore, B = 1. The final solution is 

29 1 1
( ) cos(2 ) sin(2 )

8 4 8
x t t t t     

 

22. 

 

 
  



Solutions to Problems   1-15 

 

23. 
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c. 

 

 

 

 

 

24. 
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